{"title":"胶质母细胞瘤中基于纳米技术的癌症化学预防。","authors":"Aima Adylova, Gulnara Kapanova, Zaure Datkhayeva, Karlygash Raganina, Gulnur Tanbayeva, Kaini Baigonova","doi":"10.5114/fn.2023.126886","DOIUrl":null,"url":null,"abstract":"<p><p>Brain tumours are heterogeneous and are classified comprehensively into molecular subtypes based on genetic alterations. Glioblastoma rapid progression, drug resistance, and recurrence have been scientifically linked to several factors, including its rapid growth rate, loss of apoptosis, pro-survival signalling, molecular heterogeneities and hallmark features to infiltrate vital brain structures. Because of the growing demand for design and development of delivery systems to overcome the existing limitations with the current therapeutic strategies, researchers are exploiting multifaceted aspects of nanotechnology to improve delivery of the drug payload. Firstly, nanotechnology procedures can improve the drug delivery methods with the help of nanoparticles (NPs) based nanovectors that can efficiently cross blood-brain barrier. Secondly, NPs also improve the cellular uptake of the drug as they can efficiently bind with the cell surface. Thirdly, NPs make the delivery of siRNAs and peptides possible, which can suppress the resistance of glioblastoma against TMZ or other chemo-preventive drugs. Fourthly, the use of metal NPs increases the efficiency of scanning or magnetic resonance imaging (MRI) procedures as they can produce contrasts in it. Lastly, NPs make it possible to use highly targeted co-administered strategies like chemoprevention and near infrared (NIR) or radiotherapy (RT). Hence, nanotechnology offers several promising solutions against glioblastoma by countering it on many fronts.</p>","PeriodicalId":12370,"journal":{"name":"Folia neuropathologica","volume":"61 3","pages":"235-241"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanotechnology-based cancer chemoprevention in glioblastoma.\",\"authors\":\"Aima Adylova, Gulnara Kapanova, Zaure Datkhayeva, Karlygash Raganina, Gulnur Tanbayeva, Kaini Baigonova\",\"doi\":\"10.5114/fn.2023.126886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain tumours are heterogeneous and are classified comprehensively into molecular subtypes based on genetic alterations. Glioblastoma rapid progression, drug resistance, and recurrence have been scientifically linked to several factors, including its rapid growth rate, loss of apoptosis, pro-survival signalling, molecular heterogeneities and hallmark features to infiltrate vital brain structures. Because of the growing demand for design and development of delivery systems to overcome the existing limitations with the current therapeutic strategies, researchers are exploiting multifaceted aspects of nanotechnology to improve delivery of the drug payload. Firstly, nanotechnology procedures can improve the drug delivery methods with the help of nanoparticles (NPs) based nanovectors that can efficiently cross blood-brain barrier. Secondly, NPs also improve the cellular uptake of the drug as they can efficiently bind with the cell surface. Thirdly, NPs make the delivery of siRNAs and peptides possible, which can suppress the resistance of glioblastoma against TMZ or other chemo-preventive drugs. Fourthly, the use of metal NPs increases the efficiency of scanning or magnetic resonance imaging (MRI) procedures as they can produce contrasts in it. Lastly, NPs make it possible to use highly targeted co-administered strategies like chemoprevention and near infrared (NIR) or radiotherapy (RT). Hence, nanotechnology offers several promising solutions against glioblastoma by countering it on many fronts.</p>\",\"PeriodicalId\":12370,\"journal\":{\"name\":\"Folia neuropathologica\",\"volume\":\"61 3\",\"pages\":\"235-241\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Folia neuropathologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5114/fn.2023.126886\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia neuropathologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5114/fn.2023.126886","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Nanotechnology-based cancer chemoprevention in glioblastoma.
Brain tumours are heterogeneous and are classified comprehensively into molecular subtypes based on genetic alterations. Glioblastoma rapid progression, drug resistance, and recurrence have been scientifically linked to several factors, including its rapid growth rate, loss of apoptosis, pro-survival signalling, molecular heterogeneities and hallmark features to infiltrate vital brain structures. Because of the growing demand for design and development of delivery systems to overcome the existing limitations with the current therapeutic strategies, researchers are exploiting multifaceted aspects of nanotechnology to improve delivery of the drug payload. Firstly, nanotechnology procedures can improve the drug delivery methods with the help of nanoparticles (NPs) based nanovectors that can efficiently cross blood-brain barrier. Secondly, NPs also improve the cellular uptake of the drug as they can efficiently bind with the cell surface. Thirdly, NPs make the delivery of siRNAs and peptides possible, which can suppress the resistance of glioblastoma against TMZ or other chemo-preventive drugs. Fourthly, the use of metal NPs increases the efficiency of scanning or magnetic resonance imaging (MRI) procedures as they can produce contrasts in it. Lastly, NPs make it possible to use highly targeted co-administered strategies like chemoprevention and near infrared (NIR) or radiotherapy (RT). Hence, nanotechnology offers several promising solutions against glioblastoma by countering it on many fronts.
期刊介绍:
Folia Neuropathologica is an official journal of the Mossakowski Medical Research Centre Polish Academy of Sciences and the Polish Association of Neuropathologists. The journal publishes original articles and reviews that deal with all aspects of clinical and experimental neuropathology and related fields of neuroscience research. The scope of journal includes surgical and experimental pathomorphology, ultrastructure, immunohistochemistry, biochemistry and molecular biology of the nervous tissue. Papers on surgical neuropathology and neuroimaging are also welcome. The reports in other fields relevant to the understanding of human neuropathology might be considered.