Laura C. McGary , Gemma L. Regan , Stephen L. Bearne
{"title":"用甲基酰基磷酸酯亲电试剂进行反应性结构分析。","authors":"Laura C. McGary , Gemma L. Regan , Stephen L. Bearne","doi":"10.1016/j.bbapap.2023.140945","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Activity-based protein profiling has facilitated the study of the activity of enzymes in </span>proteomes<span>, inhibitor development, and identification of enzymes that share mechanistic and active-site architectural features. Since methyl acyl phosphate monoesters<span> act as electrostatically selective anionic electrophiles for the covalent modification of nucleophiles that reside adjacent to cationic sites in proteins, we synthesized methyl hex-5-ynoyl phosphate (MHP) to broadly target such protein architectures. After treating the soluble proteome of </span></span></span><em>Paucimonas lemoignei</em><span><span> with MHP, biotinylating the resulting acylated proteins using click chemistry, enriching the protein adducts using streptavidin<span>, and analyzing the proteins by LC-MS/MS, a set of 240 enzymes and 132 non-enzyme proteins were identified for a wide spectrum of biological processes and from all 7 enzyme classes. Among those enzymes identified, β-hydroxybutyrate </span></span>dehydrogenase (</span><em>Pl</em><span>HBDH) and CTP synthase (</span><em>E. coli</em> orthologue, <em>Ec</em><span>CTPS) were purified as recombinant enzymes and their rates of inactivation and sites of modification by MHP and methyl acetyl phosphate (MAP) were characterized. MHP reacted more slowly with these proteins than MAP but exhibited greater specificity, despite its lack of multiple binding determinants. Generally, MAP modified more surface residues than MHP. MHP specifically modified Ser 146, Lys 156, and Lys 163 at the active site of </span><em>Pl</em>HBDH. MHP and MAP modified numerous residues of <em>Ec</em><span>CTPS with CTP furnishing the greatest level of protection against MHP- and MAP-dependent modification and inactivation, respectively, followed by ATP and glutamine. Overall, MHP served as an effective probe to identify proteins that are potentially amenable to inhibition by methyl acyl phosphates.</span></p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 6","pages":"Article 140945"},"PeriodicalIF":2.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reactive architecture profiling with a methyl acyl phosphate electrophile\",\"authors\":\"Laura C. McGary , Gemma L. Regan , Stephen L. Bearne\",\"doi\":\"10.1016/j.bbapap.2023.140945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Activity-based protein profiling has facilitated the study of the activity of enzymes in </span>proteomes<span>, inhibitor development, and identification of enzymes that share mechanistic and active-site architectural features. Since methyl acyl phosphate monoesters<span> act as electrostatically selective anionic electrophiles for the covalent modification of nucleophiles that reside adjacent to cationic sites in proteins, we synthesized methyl hex-5-ynoyl phosphate (MHP) to broadly target such protein architectures. After treating the soluble proteome of </span></span></span><em>Paucimonas lemoignei</em><span><span> with MHP, biotinylating the resulting acylated proteins using click chemistry, enriching the protein adducts using streptavidin<span>, and analyzing the proteins by LC-MS/MS, a set of 240 enzymes and 132 non-enzyme proteins were identified for a wide spectrum of biological processes and from all 7 enzyme classes. Among those enzymes identified, β-hydroxybutyrate </span></span>dehydrogenase (</span><em>Pl</em><span>HBDH) and CTP synthase (</span><em>E. coli</em> orthologue, <em>Ec</em><span>CTPS) were purified as recombinant enzymes and their rates of inactivation and sites of modification by MHP and methyl acetyl phosphate (MAP) were characterized. MHP reacted more slowly with these proteins than MAP but exhibited greater specificity, despite its lack of multiple binding determinants. Generally, MAP modified more surface residues than MHP. MHP specifically modified Ser 146, Lys 156, and Lys 163 at the active site of </span><em>Pl</em>HBDH. MHP and MAP modified numerous residues of <em>Ec</em><span>CTPS with CTP furnishing the greatest level of protection against MHP- and MAP-dependent modification and inactivation, respectively, followed by ATP and glutamine. Overall, MHP served as an effective probe to identify proteins that are potentially amenable to inhibition by methyl acyl phosphates.</span></p></div>\",\"PeriodicalId\":8760,\"journal\":{\"name\":\"Biochimica et biophysica acta. Proteins and proteomics\",\"volume\":\"1871 6\",\"pages\":\"Article 140945\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Proteins and proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570963923000596\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Proteins and proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963923000596","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Reactive architecture profiling with a methyl acyl phosphate electrophile
Activity-based protein profiling has facilitated the study of the activity of enzymes in proteomes, inhibitor development, and identification of enzymes that share mechanistic and active-site architectural features. Since methyl acyl phosphate monoesters act as electrostatically selective anionic electrophiles for the covalent modification of nucleophiles that reside adjacent to cationic sites in proteins, we synthesized methyl hex-5-ynoyl phosphate (MHP) to broadly target such protein architectures. After treating the soluble proteome of Paucimonas lemoignei with MHP, biotinylating the resulting acylated proteins using click chemistry, enriching the protein adducts using streptavidin, and analyzing the proteins by LC-MS/MS, a set of 240 enzymes and 132 non-enzyme proteins were identified for a wide spectrum of biological processes and from all 7 enzyme classes. Among those enzymes identified, β-hydroxybutyrate dehydrogenase (PlHBDH) and CTP synthase (E. coli orthologue, EcCTPS) were purified as recombinant enzymes and their rates of inactivation and sites of modification by MHP and methyl acetyl phosphate (MAP) were characterized. MHP reacted more slowly with these proteins than MAP but exhibited greater specificity, despite its lack of multiple binding determinants. Generally, MAP modified more surface residues than MHP. MHP specifically modified Ser 146, Lys 156, and Lys 163 at the active site of PlHBDH. MHP and MAP modified numerous residues of EcCTPS with CTP furnishing the greatest level of protection against MHP- and MAP-dependent modification and inactivation, respectively, followed by ATP and glutamine. Overall, MHP served as an effective probe to identify proteins that are potentially amenable to inhibition by methyl acyl phosphates.
期刊介绍:
BBA Proteins and Proteomics covers protein structure conformation and dynamics; protein folding; protein-ligand interactions; enzyme mechanisms, models and kinetics; protein physical properties and spectroscopy; and proteomics and bioinformatics analyses of protein structure, protein function, or protein regulation.