基于深度学习的蛋白质-蛋白质复合物结合亲和力预测和分类方法。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Rahul Nikam , Kumar Yugandhar , M. Michael Gromiha
{"title":"基于深度学习的蛋白质-蛋白质复合物结合亲和力预测和分类方法。","authors":"Rahul Nikam ,&nbsp;Kumar Yugandhar ,&nbsp;M. Michael Gromiha","doi":"10.1016/j.bbapap.2023.140948","DOIUrl":null,"url":null,"abstract":"<div><p><span>Protein-protein interactions (PPIs) play a critical role in various biological processes<span><span>. Accurately estimating the binding affinity of PPIs is essential for understanding the underlying </span>molecular recognition mechanisms. In this study, we employed a deep learning approach to predict the binding affinity (ΔG) of protein-protein complexes. To this end, we compiled a dataset of 903 protein-protein complexes, each with its corresponding experimental binding affinity, which belong to six functional classes. We extracted 8 to 20 non-redundant features from the sequence information as well as the predicted three-dimensional structures using feature selection methods for each protein functional class. Our method showed an overall mean absolute error of 1.05 kcal/mol and a correlation of 0.79 between experimental and predicted ΔG values. Additionally, we evaluated our model for discriminating high and low affinity protein-protein complexes and it achieved an accuracy of 87% with an F1 score of 0.86 using 10-fold cross-validation on the selected features. Our approach presents an efficient tool for studying PPIs and provides crucial insights into the underlying mechanisms of the molecular recognition process. The web server can be freely accessed at </span></span><span>https://web.iitm.ac.in/bioinfo2/DeepPPAPred/index.html</span><svg><path></path></svg></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based method for predicting and classifying the binding affinity of protein-protein complexes\",\"authors\":\"Rahul Nikam ,&nbsp;Kumar Yugandhar ,&nbsp;M. Michael Gromiha\",\"doi\":\"10.1016/j.bbapap.2023.140948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Protein-protein interactions (PPIs) play a critical role in various biological processes<span><span>. Accurately estimating the binding affinity of PPIs is essential for understanding the underlying </span>molecular recognition mechanisms. In this study, we employed a deep learning approach to predict the binding affinity (ΔG) of protein-protein complexes. To this end, we compiled a dataset of 903 protein-protein complexes, each with its corresponding experimental binding affinity, which belong to six functional classes. We extracted 8 to 20 non-redundant features from the sequence information as well as the predicted three-dimensional structures using feature selection methods for each protein functional class. Our method showed an overall mean absolute error of 1.05 kcal/mol and a correlation of 0.79 between experimental and predicted ΔG values. Additionally, we evaluated our model for discriminating high and low affinity protein-protein complexes and it achieved an accuracy of 87% with an F1 score of 0.86 using 10-fold cross-validation on the selected features. Our approach presents an efficient tool for studying PPIs and provides crucial insights into the underlying mechanisms of the molecular recognition process. The web server can be freely accessed at </span></span><span>https://web.iitm.ac.in/bioinfo2/DeepPPAPred/index.html</span><svg><path></path></svg></p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570963923000626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963923000626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质-蛋白质相互作用(PPIs)在各种生物过程中起着至关重要的作用。准确估计PPIs的结合亲和力对于理解潜在的分子识别机制至关重要。在这项研究中,我们采用了一种深度学习方法来预测蛋白质-蛋白质复合物的结合亲和力(ΔG)。为此,我们汇编了903个蛋白质-蛋白质复合物的数据集,每个复合物都有相应的实验结合亲和力,属于六个功能类别。我们使用每个蛋白质功能类的特征选择方法,从序列信息以及预测的三维结构中提取了8到20个非冗余特征。我们的方法显示,总体平均绝对误差为1.05kcal/mol,实验值和预测值ΔG之间的相关性为0.79。此外,我们评估了我们的模型区分高亲和力和低亲和力蛋白质-蛋白质复合物的能力,使用对所选特征的10倍交叉验证,该模型的准确率为87%,F1得分为0.86。我们的方法为研究PPI提供了一种有效的工具,并为分子识别过程的潜在机制提供了重要的见解。web服务器可以在https://web.iitm.ac.in/bioinfo2/DeepPPAPred/index.html.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning-based method for predicting and classifying the binding affinity of protein-protein complexes

Protein-protein interactions (PPIs) play a critical role in various biological processes. Accurately estimating the binding affinity of PPIs is essential for understanding the underlying molecular recognition mechanisms. In this study, we employed a deep learning approach to predict the binding affinity (ΔG) of protein-protein complexes. To this end, we compiled a dataset of 903 protein-protein complexes, each with its corresponding experimental binding affinity, which belong to six functional classes. We extracted 8 to 20 non-redundant features from the sequence information as well as the predicted three-dimensional structures using feature selection methods for each protein functional class. Our method showed an overall mean absolute error of 1.05 kcal/mol and a correlation of 0.79 between experimental and predicted ΔG values. Additionally, we evaluated our model for discriminating high and low affinity protein-protein complexes and it achieved an accuracy of 87% with an F1 score of 0.86 using 10-fold cross-validation on the selected features. Our approach presents an efficient tool for studying PPIs and provides crucial insights into the underlying mechanisms of the molecular recognition process. The web server can be freely accessed at https://web.iitm.ac.in/bioinfo2/DeepPPAPred/index.html

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信