冷冻象鼻术后脊髓损伤的预防和处理。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2023-09-28 Epub Date: 2023-09-22 DOI:10.21037/acs-2023-scp-16
Giacomo Murana, Francesco Campanini, Costanza Fiaschini, Giuseppe Barberio, Gianluca Folesani, Davide Pacini
{"title":"冷冻象鼻术后脊髓损伤的预防和处理。","authors":"Giacomo Murana, Francesco Campanini, Costanza Fiaschini, Giuseppe Barberio, Gianluca Folesani, Davide Pacini","doi":"10.21037/acs-2023-scp-16","DOIUrl":null,"url":null,"abstract":"New techniques and devices have broadened the spectrum of therapeutic strategies for patients with complex aortic pathologies. Total arch replacement (TAR) using the frozen elephant trunk (FET) technique is one of the latest approaches to surgically treat complex arch and proximal descending aortic pathologies. Although this technique has showed excellent results, it is associated with several complications, such as spinal cord injury (SCI). This is related to the coverage of an extended portion of descending aorta, including the origin of intercostal arteries. The longer the portion of descending aorta covered, the higher the risk of SCI occurrence. Consequently, knowing the anatomy and vascularization of the spinal cord is crucial (1). Even though coverage of the descending aorta beyond T8 (due to coverage of the Adamkiewicz artery) seems to be one of the most important factors associated with higher risk of SCI, there are other elements involved, such as prolonged spinal cord ischemia observed during hypothermic circulatory arrest and air or corpuscular thromboembolism (2). A higher incidence of this neurological complication after the FET is more often observed in chronic degenerative aneurysms and acute aortic dissections and is less frequently reported in chronic dissections due to the possibility of pre-conditioning of the spinal cord by collateral networks (3,4). Preventive measures can be employed in extended surgical aortic coverage to reduce the occurrence of spinal cord injuries, such as cerebrospinal fluid (CSF) drainage, keeping the mean arterial pressure (MAP) above 90 mmHg, early evaluation of neurological deficits, and the use of moderate hypothermia. CSF drainage allows monitoring of the peridural pressure, as well as the capability of its reduction when it exceeds critical values. However, intrathecal drainage placement can represent a risk and careful examination of the coagulation panel is strongly recommended. In this video article, we present a case of a FET showing how it can be possible in the prevention and management of SCI. A literature review on this subject will describe the incidence and state of the art perspectives on this neurological complication.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d2/f4/acs-12-05-500.PMC10561344.pdf","citationCount":"0","resultStr":"{\"title\":\"Spinal cord injury after frozen elephant trunk procedures-prevention and management.\",\"authors\":\"Giacomo Murana, Francesco Campanini, Costanza Fiaschini, Giuseppe Barberio, Gianluca Folesani, Davide Pacini\",\"doi\":\"10.21037/acs-2023-scp-16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New techniques and devices have broadened the spectrum of therapeutic strategies for patients with complex aortic pathologies. Total arch replacement (TAR) using the frozen elephant trunk (FET) technique is one of the latest approaches to surgically treat complex arch and proximal descending aortic pathologies. Although this technique has showed excellent results, it is associated with several complications, such as spinal cord injury (SCI). This is related to the coverage of an extended portion of descending aorta, including the origin of intercostal arteries. The longer the portion of descending aorta covered, the higher the risk of SCI occurrence. Consequently, knowing the anatomy and vascularization of the spinal cord is crucial (1). Even though coverage of the descending aorta beyond T8 (due to coverage of the Adamkiewicz artery) seems to be one of the most important factors associated with higher risk of SCI, there are other elements involved, such as prolonged spinal cord ischemia observed during hypothermic circulatory arrest and air or corpuscular thromboembolism (2). A higher incidence of this neurological complication after the FET is more often observed in chronic degenerative aneurysms and acute aortic dissections and is less frequently reported in chronic dissections due to the possibility of pre-conditioning of the spinal cord by collateral networks (3,4). Preventive measures can be employed in extended surgical aortic coverage to reduce the occurrence of spinal cord injuries, such as cerebrospinal fluid (CSF) drainage, keeping the mean arterial pressure (MAP) above 90 mmHg, early evaluation of neurological deficits, and the use of moderate hypothermia. CSF drainage allows monitoring of the peridural pressure, as well as the capability of its reduction when it exceeds critical values. However, intrathecal drainage placement can represent a risk and careful examination of the coagulation panel is strongly recommended. In this video article, we present a case of a FET showing how it can be possible in the prevention and management of SCI. A literature review on this subject will describe the incidence and state of the art perspectives on this neurological complication.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d2/f4/acs-12-05-500.PMC10561344.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21037/acs-2023-scp-16\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/acs-2023-scp-16","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spinal cord injury after frozen elephant trunk procedures-prevention and management.

Spinal cord injury after frozen elephant trunk procedures-prevention and management.
New techniques and devices have broadened the spectrum of therapeutic strategies for patients with complex aortic pathologies. Total arch replacement (TAR) using the frozen elephant trunk (FET) technique is one of the latest approaches to surgically treat complex arch and proximal descending aortic pathologies. Although this technique has showed excellent results, it is associated with several complications, such as spinal cord injury (SCI). This is related to the coverage of an extended portion of descending aorta, including the origin of intercostal arteries. The longer the portion of descending aorta covered, the higher the risk of SCI occurrence. Consequently, knowing the anatomy and vascularization of the spinal cord is crucial (1). Even though coverage of the descending aorta beyond T8 (due to coverage of the Adamkiewicz artery) seems to be one of the most important factors associated with higher risk of SCI, there are other elements involved, such as prolonged spinal cord ischemia observed during hypothermic circulatory arrest and air or corpuscular thromboembolism (2). A higher incidence of this neurological complication after the FET is more often observed in chronic degenerative aneurysms and acute aortic dissections and is less frequently reported in chronic dissections due to the possibility of pre-conditioning of the spinal cord by collateral networks (3,4). Preventive measures can be employed in extended surgical aortic coverage to reduce the occurrence of spinal cord injuries, such as cerebrospinal fluid (CSF) drainage, keeping the mean arterial pressure (MAP) above 90 mmHg, early evaluation of neurological deficits, and the use of moderate hypothermia. CSF drainage allows monitoring of the peridural pressure, as well as the capability of its reduction when it exceeds critical values. However, intrathecal drainage placement can represent a risk and careful examination of the coagulation panel is strongly recommended. In this video article, we present a case of a FET showing how it can be possible in the prevention and management of SCI. A literature review on this subject will describe the incidence and state of the art perspectives on this neurological complication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信