Andreas Eich, Andrzej Grzechnik, Yixi Su, Bachir Ouladdiaf, Denis Sheptyakov, Thomas Wolf, Vaclav Petricek, Hend Shahed, Karen Friese
{"title":"CrAs在低温高压下的磁性结构不可测定。","authors":"Andreas Eich, Andrzej Grzechnik, Yixi Su, Bachir Ouladdiaf, Denis Sheptyakov, Thomas Wolf, Vaclav Petricek, Hend Shahed, Karen Friese","doi":"10.1107/S205252062300817X","DOIUrl":null,"url":null,"abstract":"<p><p>The magnetic structure of chromium arsenide CrAs is studied with neutron powder diffraction at ambient pressure in the temperature range 1.5-300 K as well as with neutron single-crystal diffraction at 2 K and 0.12 GPa. The material undergoes an anti-isostructural phase transition at T<sub>N</sub> = 267 K and atmospheric conditions, in which both orthorhombic phases have the same space-group symmetry (Pnma, Z = 4) but different distortions of the parent hexagonal structure of the NiAs type (P6<sub>3</sub>/mmc, Z = 2). The magnetic structure below T<sub>N</sub> is incommensurate with the propagation vector k = (0, 0, k<sub>c</sub>). At ambient pressure, the component k<sub>c</sub> decreases from k<sub>c</sub> = 0.3807 (7) at 260 K to k<sub>c</sub> = 0.3531 (6) at 50 K. Below this temperature, it is basically constant. With increasing pressure at 2 K, k<sub>c</sub> is also constant within standard uncertainties [k<sub>c</sub> = 0.353 (2)]. For the analysis of the magnetic structure, a group-theoretical approach based on the space group of the nuclear structure and its subgroups is used. To avoid falling into false minima in the refinements, a random search for magnetic moments in the models is implemented. In the literature, the magnetic structure has been determined on the basis of powder diffraction data as a double helix propagating along the c axis. Although this double-helical model leads to satisfactory agreement factors for our powder data, it does not reproduce the intensities of the magnetic satellite reflections measured on single-crystal data in a satisfactory way and can therefore be discarded. Instead, several other models are found that lead to better agreement. Each of them is spiral-like with directional components in all three directions and with no spin-density wave character that would cause a non-constant magnetic moment. In all these models, the ordering of the spins is neither a pure helix nor a pure cycloid. Instead, the unit vectors of the spin rotation planes make an angle α, 0° < α < 90°, with respect to the c* direction. The model in superspace group P2<sub>1</sub>.1'(α0γ)0s yields the best agreement factors in the refinements of the neutron single-crystal and powder diffraction data. This model is unique as it is the only one in which all the magnetic moments rotate with the same chirality.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833358/pdf/","citationCount":"0","resultStr":"{\"title\":\"Incommensurate magnetic structure of CrAs at low temperatures and high pressures.\",\"authors\":\"Andreas Eich, Andrzej Grzechnik, Yixi Su, Bachir Ouladdiaf, Denis Sheptyakov, Thomas Wolf, Vaclav Petricek, Hend Shahed, Karen Friese\",\"doi\":\"10.1107/S205252062300817X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The magnetic structure of chromium arsenide CrAs is studied with neutron powder diffraction at ambient pressure in the temperature range 1.5-300 K as well as with neutron single-crystal diffraction at 2 K and 0.12 GPa. The material undergoes an anti-isostructural phase transition at T<sub>N</sub> = 267 K and atmospheric conditions, in which both orthorhombic phases have the same space-group symmetry (Pnma, Z = 4) but different distortions of the parent hexagonal structure of the NiAs type (P6<sub>3</sub>/mmc, Z = 2). The magnetic structure below T<sub>N</sub> is incommensurate with the propagation vector k = (0, 0, k<sub>c</sub>). At ambient pressure, the component k<sub>c</sub> decreases from k<sub>c</sub> = 0.3807 (7) at 260 K to k<sub>c</sub> = 0.3531 (6) at 50 K. Below this temperature, it is basically constant. With increasing pressure at 2 K, k<sub>c</sub> is also constant within standard uncertainties [k<sub>c</sub> = 0.353 (2)]. For the analysis of the magnetic structure, a group-theoretical approach based on the space group of the nuclear structure and its subgroups is used. To avoid falling into false minima in the refinements, a random search for magnetic moments in the models is implemented. In the literature, the magnetic structure has been determined on the basis of powder diffraction data as a double helix propagating along the c axis. Although this double-helical model leads to satisfactory agreement factors for our powder data, it does not reproduce the intensities of the magnetic satellite reflections measured on single-crystal data in a satisfactory way and can therefore be discarded. Instead, several other models are found that lead to better agreement. Each of them is spiral-like with directional components in all three directions and with no spin-density wave character that would cause a non-constant magnetic moment. In all these models, the ordering of the spins is neither a pure helix nor a pure cycloid. Instead, the unit vectors of the spin rotation planes make an angle α, 0° < α < 90°, with respect to the c* direction. The model in superspace group P2<sub>1</sub>.1'(α0γ)0s yields the best agreement factors in the refinements of the neutron single-crystal and powder diffraction data. This model is unique as it is the only one in which all the magnetic moments rotate with the same chirality.</p>\",\"PeriodicalId\":7320,\"journal\":{\"name\":\"Acta crystallographica Section B, Structural science, crystal engineering and materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833358/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta crystallographica Section B, Structural science, crystal engineering and materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1107/S205252062300817X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica Section B, Structural science, crystal engineering and materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S205252062300817X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Incommensurate magnetic structure of CrAs at low temperatures and high pressures.
The magnetic structure of chromium arsenide CrAs is studied with neutron powder diffraction at ambient pressure in the temperature range 1.5-300 K as well as with neutron single-crystal diffraction at 2 K and 0.12 GPa. The material undergoes an anti-isostructural phase transition at TN = 267 K and atmospheric conditions, in which both orthorhombic phases have the same space-group symmetry (Pnma, Z = 4) but different distortions of the parent hexagonal structure of the NiAs type (P63/mmc, Z = 2). The magnetic structure below TN is incommensurate with the propagation vector k = (0, 0, kc). At ambient pressure, the component kc decreases from kc = 0.3807 (7) at 260 K to kc = 0.3531 (6) at 50 K. Below this temperature, it is basically constant. With increasing pressure at 2 K, kc is also constant within standard uncertainties [kc = 0.353 (2)]. For the analysis of the magnetic structure, a group-theoretical approach based on the space group of the nuclear structure and its subgroups is used. To avoid falling into false minima in the refinements, a random search for magnetic moments in the models is implemented. In the literature, the magnetic structure has been determined on the basis of powder diffraction data as a double helix propagating along the c axis. Although this double-helical model leads to satisfactory agreement factors for our powder data, it does not reproduce the intensities of the magnetic satellite reflections measured on single-crystal data in a satisfactory way and can therefore be discarded. Instead, several other models are found that lead to better agreement. Each of them is spiral-like with directional components in all three directions and with no spin-density wave character that would cause a non-constant magnetic moment. In all these models, the ordering of the spins is neither a pure helix nor a pure cycloid. Instead, the unit vectors of the spin rotation planes make an angle α, 0° < α < 90°, with respect to the c* direction. The model in superspace group P21.1'(α0γ)0s yields the best agreement factors in the refinements of the neutron single-crystal and powder diffraction data. This model is unique as it is the only one in which all the magnetic moments rotate with the same chirality.
期刊介绍:
Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials publishes scientific articles related to the structural science of compounds and materials in the widest sense. Knowledge of the arrangements of atoms, including their temporal variations and dependencies on temperature and pressure, is often the key to understanding physical and chemical phenomena and is crucial for the design of new materials and supramolecular devices. Acta Crystallographica B is the forum for the publication of such contributions. Scientific developments based on experimental studies as well as those based on theoretical approaches, including crystal-structure prediction, structure-property relations and the use of databases of crystal structures, are published.