{"title":"瞳孔中多感官信号的线性积分。","authors":"Wenjie Liu, Yuhui Cheng, Xiangyong Yuan, Yi Jiang","doi":"10.1111/psyp.14453","DOIUrl":null,"url":null,"abstract":"<p><p>The pupil of the eye responds to various salient signals from different modalities, but there is no consensus on how these pupillary responses are integrated when multiple signals appear simultaneously. Both linear and nonlinear integration have been found previously. The current study aimed to reexamine the nature of pupillary integration, and specifically focused on the early, transient pupillary responses due to its close relationship with orienting. To separate the early pupillary responses out of the pupil time series, we adopted a pupil oscillation paradigm in which sensory stimuli were periodically presented. The simulation analysis confirmed that the amplitude of the pupil oscillation, induced by stimuli repeatedly presented at relatively high rates, can precisely reflect the early, transient pupillary responses without involving the late and sustained pupillary responses. The experimental results then showed that the amplitude of pupil oscillation induced by a series of simultaneous audiovisual stimuli equaled to a linear summation of the oscillatory amplitudes when unisensory stimuli were presented alone. Moreover, the tonic arousal levels, indicated by the baseline pupil size, cannot shift the summation from linear to nonlinear. These findings together support the additive nature of multisensory pupillary integration for the early, orienting-related pupillary responses. The additive nature of pupillary integration further implies that multiple pupillary responses may be independent of each other, irrespective of their potential cognitive and neural drivers.</p>","PeriodicalId":94182,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear integration of multisensory signals in the pupil.\",\"authors\":\"Wenjie Liu, Yuhui Cheng, Xiangyong Yuan, Yi Jiang\",\"doi\":\"10.1111/psyp.14453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pupil of the eye responds to various salient signals from different modalities, but there is no consensus on how these pupillary responses are integrated when multiple signals appear simultaneously. Both linear and nonlinear integration have been found previously. The current study aimed to reexamine the nature of pupillary integration, and specifically focused on the early, transient pupillary responses due to its close relationship with orienting. To separate the early pupillary responses out of the pupil time series, we adopted a pupil oscillation paradigm in which sensory stimuli were periodically presented. The simulation analysis confirmed that the amplitude of the pupil oscillation, induced by stimuli repeatedly presented at relatively high rates, can precisely reflect the early, transient pupillary responses without involving the late and sustained pupillary responses. The experimental results then showed that the amplitude of pupil oscillation induced by a series of simultaneous audiovisual stimuli equaled to a linear summation of the oscillatory amplitudes when unisensory stimuli were presented alone. Moreover, the tonic arousal levels, indicated by the baseline pupil size, cannot shift the summation from linear to nonlinear. These findings together support the additive nature of multisensory pupillary integration for the early, orienting-related pupillary responses. The additive nature of pupillary integration further implies that multiple pupillary responses may be independent of each other, irrespective of their potential cognitive and neural drivers.</p>\",\"PeriodicalId\":94182,\"journal\":{\"name\":\"Psychophysiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychophysiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/psyp.14453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychophysiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/psyp.14453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Linear integration of multisensory signals in the pupil.
The pupil of the eye responds to various salient signals from different modalities, but there is no consensus on how these pupillary responses are integrated when multiple signals appear simultaneously. Both linear and nonlinear integration have been found previously. The current study aimed to reexamine the nature of pupillary integration, and specifically focused on the early, transient pupillary responses due to its close relationship with orienting. To separate the early pupillary responses out of the pupil time series, we adopted a pupil oscillation paradigm in which sensory stimuli were periodically presented. The simulation analysis confirmed that the amplitude of the pupil oscillation, induced by stimuli repeatedly presented at relatively high rates, can precisely reflect the early, transient pupillary responses without involving the late and sustained pupillary responses. The experimental results then showed that the amplitude of pupil oscillation induced by a series of simultaneous audiovisual stimuli equaled to a linear summation of the oscillatory amplitudes when unisensory stimuli were presented alone. Moreover, the tonic arousal levels, indicated by the baseline pupil size, cannot shift the summation from linear to nonlinear. These findings together support the additive nature of multisensory pupillary integration for the early, orienting-related pupillary responses. The additive nature of pupillary integration further implies that multiple pupillary responses may be independent of each other, irrespective of their potential cognitive and neural drivers.