螺旋体三维基因组进化机制和动力学的新问题。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Thea F Rogers, Oleg Simakov
{"title":"螺旋体三维基因组进化机制和动力学的新问题。","authors":"Thea F Rogers, Oleg Simakov","doi":"10.1093/bfgp/elad043","DOIUrl":null,"url":null,"abstract":"<p><p>Information on how 3D genome topology emerged in animal evolution, how stable it is during development, its role in the evolution of phenotypic novelties and how exactly it affects gene expression is highly debated. So far, data to address these questions are lacking with the exception of a few key model species. Several gene regulatory mechanisms have been proposed, including scenarios where genome topology has little to no impact on gene expression, and vice versa. The ancient and diverse clade of spiralians may provide a crucial testing ground for such mechanisms. Sprialians have followed distinct evolutionary trajectories, with some clades experiencing genome expansions and/or large-scale genome rearrangements, and others undergoing genome contraction, substantially impacting their size and organisation. These changes have been associated with many phenotypic innovations in this clade. In this review, we describe how emerging genome topology data, along with functional tools, allow for testing these scenarios and discuss their predicted outcomes.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658181/pdf/","citationCount":"0","resultStr":"{\"title\":\"Emerging questions on the mechanisms and dynamics of 3D genome evolution in spiralians.\",\"authors\":\"Thea F Rogers, Oleg Simakov\",\"doi\":\"10.1093/bfgp/elad043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Information on how 3D genome topology emerged in animal evolution, how stable it is during development, its role in the evolution of phenotypic novelties and how exactly it affects gene expression is highly debated. So far, data to address these questions are lacking with the exception of a few key model species. Several gene regulatory mechanisms have been proposed, including scenarios where genome topology has little to no impact on gene expression, and vice versa. The ancient and diverse clade of spiralians may provide a crucial testing ground for such mechanisms. Sprialians have followed distinct evolutionary trajectories, with some clades experiencing genome expansions and/or large-scale genome rearrangements, and others undergoing genome contraction, substantially impacting their size and organisation. These changes have been associated with many phenotypic innovations in this clade. In this review, we describe how emerging genome topology data, along with functional tools, allow for testing these scenarios and discuss their predicted outcomes.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658181/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bfgp/elad043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elad043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

关于3D基因组拓扑结构是如何在动物进化中出现的,它在发育过程中的稳定性,它在表型新颖性进化中的作用,以及它究竟如何影响基因表达,这些信息都备受争议。到目前为止,除了一些关键的模式物种外,还缺乏解决这些问题的数据。已经提出了几种基因调控机制,包括基因组拓扑结构对基因表达几乎没有影响的情况,反之亦然。螺旋虫古老而多样的分支可能为这种机制提供了一个重要的试验场。Sprialians遵循着不同的进化轨迹,一些分支经历了基因组扩增和/或大规模基因组重排,而另一些分支则经历了基因组收缩,这大大影响了它们的规模和组织。这些变化与该分支中的许多表型创新有关。在这篇综述中,我们描述了新兴的基因组拓扑数据以及功能工具如何允许测试这些场景,并讨论其预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emerging questions on the mechanisms and dynamics of 3D genome evolution in spiralians.

Information on how 3D genome topology emerged in animal evolution, how stable it is during development, its role in the evolution of phenotypic novelties and how exactly it affects gene expression is highly debated. So far, data to address these questions are lacking with the exception of a few key model species. Several gene regulatory mechanisms have been proposed, including scenarios where genome topology has little to no impact on gene expression, and vice versa. The ancient and diverse clade of spiralians may provide a crucial testing ground for such mechanisms. Sprialians have followed distinct evolutionary trajectories, with some clades experiencing genome expansions and/or large-scale genome rearrangements, and others undergoing genome contraction, substantially impacting their size and organisation. These changes have been associated with many phenotypic innovations in this clade. In this review, we describe how emerging genome topology data, along with functional tools, allow for testing these scenarios and discuss their predicted outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信