Wenchao Shi, Tinghui Li, Huiwen Li, Juan Ren, Meiyu Lv, Qi Wang, Yaowu He, Yao Yu, Lijie Liu, Shoude Jin, Hong Chen
{"title":"生物信息学方法鉴定与新冠肺炎和特发性肺纤维化相关的中枢基因。","authors":"Wenchao Shi, Tinghui Li, Huiwen Li, Juan Ren, Meiyu Lv, Qi Wang, Yaowu He, Yao Yu, Lijie Liu, Shoude Jin, Hong Chen","doi":"10.1049/syb2.12080","DOIUrl":null,"url":null,"abstract":"<p>The coronavirus disease 2019 (COVID-19) has developed into a global health crisis. Pulmonary fibrosis, as one of the complications of SARS-CoV-2 infection, deserves attention. As COVID-19 is a new clinical entity that is constantly evolving, and many aspects of disease are remain unknown. The datasets of COVID-19 and idiopathic pulmonary fibrosis were obtained from the Gene Expression Omnibus. The hub genes were screened out using the Random Forest (RF) algorithm depending on the severity of patients with COVID-19. A risk prediction model was developed to assess the prognosis of patients infected with SARS-CoV-2, which was evaluated by another dataset. Six genes (named NELL2, GPR183, S100A8, ALPL, CD177, and IL1R2) may be associated with the development of PF in patients with severe SARS-CoV-2 infection. S100A8 is thought to be an important target gene that is closely associated with COVID-19 and pulmonary fibrosis. Construction of a neural network model was successfully predicted the prognosis of patients with COVID-19. With the increasing availability of COVID-19 datasets, bioinformatic methods can provide possible predictive targets for the diagnosis, treatment, and prognosis of the disease and show intervention directions for the development of clinical drugs and vaccines.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"17 6","pages":"336-351"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12080","citationCount":"1","resultStr":"{\"title\":\"Bioinformatics approach to identify the hub gene associated with COVID-19 and idiopathic pulmonary fibrosis\",\"authors\":\"Wenchao Shi, Tinghui Li, Huiwen Li, Juan Ren, Meiyu Lv, Qi Wang, Yaowu He, Yao Yu, Lijie Liu, Shoude Jin, Hong Chen\",\"doi\":\"10.1049/syb2.12080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The coronavirus disease 2019 (COVID-19) has developed into a global health crisis. Pulmonary fibrosis, as one of the complications of SARS-CoV-2 infection, deserves attention. As COVID-19 is a new clinical entity that is constantly evolving, and many aspects of disease are remain unknown. The datasets of COVID-19 and idiopathic pulmonary fibrosis were obtained from the Gene Expression Omnibus. The hub genes were screened out using the Random Forest (RF) algorithm depending on the severity of patients with COVID-19. A risk prediction model was developed to assess the prognosis of patients infected with SARS-CoV-2, which was evaluated by another dataset. Six genes (named NELL2, GPR183, S100A8, ALPL, CD177, and IL1R2) may be associated with the development of PF in patients with severe SARS-CoV-2 infection. S100A8 is thought to be an important target gene that is closely associated with COVID-19 and pulmonary fibrosis. Construction of a neural network model was successfully predicted the prognosis of patients with COVID-19. With the increasing availability of COVID-19 datasets, bioinformatic methods can provide possible predictive targets for the diagnosis, treatment, and prognosis of the disease and show intervention directions for the development of clinical drugs and vaccines.</p>\",\"PeriodicalId\":50379,\"journal\":{\"name\":\"IET Systems Biology\",\"volume\":\"17 6\",\"pages\":\"336-351\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12080\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12080\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12080","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Bioinformatics approach to identify the hub gene associated with COVID-19 and idiopathic pulmonary fibrosis
The coronavirus disease 2019 (COVID-19) has developed into a global health crisis. Pulmonary fibrosis, as one of the complications of SARS-CoV-2 infection, deserves attention. As COVID-19 is a new clinical entity that is constantly evolving, and many aspects of disease are remain unknown. The datasets of COVID-19 and idiopathic pulmonary fibrosis were obtained from the Gene Expression Omnibus. The hub genes were screened out using the Random Forest (RF) algorithm depending on the severity of patients with COVID-19. A risk prediction model was developed to assess the prognosis of patients infected with SARS-CoV-2, which was evaluated by another dataset. Six genes (named NELL2, GPR183, S100A8, ALPL, CD177, and IL1R2) may be associated with the development of PF in patients with severe SARS-CoV-2 infection. S100A8 is thought to be an important target gene that is closely associated with COVID-19 and pulmonary fibrosis. Construction of a neural network model was successfully predicted the prognosis of patients with COVID-19. With the increasing availability of COVID-19 datasets, bioinformatic methods can provide possible predictive targets for the diagnosis, treatment, and prognosis of the disease and show intervention directions for the development of clinical drugs and vaccines.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.