研究生命周期决定因素和预防早发性负担性多发病(MELD-B)的多学科生态系统——研究合作方案。

Journal of multimorbidity and comorbidity Pub Date : 2023-09-25 eCollection Date: 2023-01-01 DOI:10.1177/26335565231204544
Simon Ds Fraser, Sebastian Stannard, Emilia Holland, Michael Boniface, Rebecca B Hoyle, Rebecca Wilkinson, Ashley Akbari, Mark Ashworth, Ann Berrington, Roberta Chiovoloni, Jessica Enright, Nick A Francis, Gareth Giles, Martin Gulliford, Sara Macdonald, Frances S Mair, Rhiannon K Owen, Shantini Paranjothy, Heather Parsons, Ruben J Sanchez-Garcia, Mozhdeh Shiranirad, Zlatko Zlatev, Nisreen Alwan
{"title":"研究生命周期决定因素和预防早发性负担性多发病(MELD-B)的多学科生态系统——研究合作方案。","authors":"Simon Ds Fraser,&nbsp;Sebastian Stannard,&nbsp;Emilia Holland,&nbsp;Michael Boniface,&nbsp;Rebecca B Hoyle,&nbsp;Rebecca Wilkinson,&nbsp;Ashley Akbari,&nbsp;Mark Ashworth,&nbsp;Ann Berrington,&nbsp;Roberta Chiovoloni,&nbsp;Jessica Enright,&nbsp;Nick A Francis,&nbsp;Gareth Giles,&nbsp;Martin Gulliford,&nbsp;Sara Macdonald,&nbsp;Frances S Mair,&nbsp;Rhiannon K Owen,&nbsp;Shantini Paranjothy,&nbsp;Heather Parsons,&nbsp;Ruben J Sanchez-Garcia,&nbsp;Mozhdeh Shiranirad,&nbsp;Zlatko Zlatev,&nbsp;Nisreen Alwan","doi":"10.1177/26335565231204544","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Most people living with multiple long-term condition multimorbidity (MLTC-M) are under 65 (defined as 'early onset'). Earlier and greater accrual of long-term conditions (LTCs) may be influenced by the timing and nature of exposure to key risk factors, wider determinants or other LTCs at different life stages. We have established a research collaboration titled 'MELD-B' to understand how wider determinants, sentinel conditions (the first LTC in the lifecourse) and LTC accrual sequence affect risk of early-onset, burdensome MLTC-M, and to inform prevention interventions.</p><p><strong>Aim: </strong>Our aim is to identify critical periods in the lifecourse for prevention of early-onset, burdensome MLTC-M, identified through the analysis of birth cohorts and electronic health records, including artificial intelligence (AI)-enhanced analyses.</p><p><strong>Design: </strong>We will develop deeper understanding of 'burdensomeness' and 'complexity' through a qualitative evidence synthesis and a consensus study. Using safe data environments for analyses across large, representative routine healthcare datasets and birth cohorts, we will apply AI methods to identify early-onset, burdensome MLTC-M clusters and sentinel conditions, develop semi-supervised learning to match individuals across datasets, identify determinants of burdensome clusters, and model trajectories of LTC and burden accrual. We will characterise early-life (under 18 years) risk factors for early-onset, burdensome MLTC-M and sentinel conditions. Finally, using AI and causal inference modelling, we will model potential 'preventable moments', defined as time periods in the life course where there is an opportunity for intervention on risk factors and early determinants to prevent the development of MLTC-M. Patient and public involvement is integrated throughout.</p>","PeriodicalId":73843,"journal":{"name":"Journal of multimorbidity and comorbidity","volume":"13 ","pages":"26335565231204544"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521301/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multidisciplinary ecosystem to study lifecourse determinants and prevention of early-onset burdensome multimorbidity (MELD-B) - protocol for a research collaboration.\",\"authors\":\"Simon Ds Fraser,&nbsp;Sebastian Stannard,&nbsp;Emilia Holland,&nbsp;Michael Boniface,&nbsp;Rebecca B Hoyle,&nbsp;Rebecca Wilkinson,&nbsp;Ashley Akbari,&nbsp;Mark Ashworth,&nbsp;Ann Berrington,&nbsp;Roberta Chiovoloni,&nbsp;Jessica Enright,&nbsp;Nick A Francis,&nbsp;Gareth Giles,&nbsp;Martin Gulliford,&nbsp;Sara Macdonald,&nbsp;Frances S Mair,&nbsp;Rhiannon K Owen,&nbsp;Shantini Paranjothy,&nbsp;Heather Parsons,&nbsp;Ruben J Sanchez-Garcia,&nbsp;Mozhdeh Shiranirad,&nbsp;Zlatko Zlatev,&nbsp;Nisreen Alwan\",\"doi\":\"10.1177/26335565231204544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Most people living with multiple long-term condition multimorbidity (MLTC-M) are under 65 (defined as 'early onset'). Earlier and greater accrual of long-term conditions (LTCs) may be influenced by the timing and nature of exposure to key risk factors, wider determinants or other LTCs at different life stages. We have established a research collaboration titled 'MELD-B' to understand how wider determinants, sentinel conditions (the first LTC in the lifecourse) and LTC accrual sequence affect risk of early-onset, burdensome MLTC-M, and to inform prevention interventions.</p><p><strong>Aim: </strong>Our aim is to identify critical periods in the lifecourse for prevention of early-onset, burdensome MLTC-M, identified through the analysis of birth cohorts and electronic health records, including artificial intelligence (AI)-enhanced analyses.</p><p><strong>Design: </strong>We will develop deeper understanding of 'burdensomeness' and 'complexity' through a qualitative evidence synthesis and a consensus study. Using safe data environments for analyses across large, representative routine healthcare datasets and birth cohorts, we will apply AI methods to identify early-onset, burdensome MLTC-M clusters and sentinel conditions, develop semi-supervised learning to match individuals across datasets, identify determinants of burdensome clusters, and model trajectories of LTC and burden accrual. We will characterise early-life (under 18 years) risk factors for early-onset, burdensome MLTC-M and sentinel conditions. Finally, using AI and causal inference modelling, we will model potential 'preventable moments', defined as time periods in the life course where there is an opportunity for intervention on risk factors and early determinants to prevent the development of MLTC-M. Patient and public involvement is integrated throughout.</p>\",\"PeriodicalId\":73843,\"journal\":{\"name\":\"Journal of multimorbidity and comorbidity\",\"volume\":\"13 \",\"pages\":\"26335565231204544\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521301/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of multimorbidity and comorbidity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/26335565231204544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of multimorbidity and comorbidity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/26335565231204544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:大多数患有多种长期疾病多发病(MLTC-M)的人年龄在65岁以下(定义为“早发”)。长期疾病(LTCs)的早期和更多积累可能受到不同生命阶段暴露于关键风险因素、更广泛的决定因素或其他LTCs的时间和性质的影响。我们建立了一个名为“MELD-B”的研究合作,以了解更广泛的决定因素、哨点条件(生命周期中的第一个LTC)和LTC累积序列如何影响早发性、繁重的MLTC-M的风险,并为预防干预提供信息。目的:我们的目标是通过对出生队列和电子健康记录的分析,包括人工智能(AI)增强分析,确定生命周期中预防早发性、负担沉重的MLTC-M的关键时期。设计:我们将通过定性证据综合和共识研究,加深对“负担性”和“复杂性”的理解。使用安全的数据环境对大型、有代表性的常规医疗保健数据集和出生队列进行分析,我们将应用人工智能方法来识别早发性、繁重的MLTC-M集群和哨点条件,开发半监督学习来匹配数据集中的个体,识别繁重集群的决定因素,并对LTC和负担累积的轨迹进行建模。我们将描述早发性、繁重的MLTC-M和前哨条件的早期生活(18岁以下)风险因素。最后,使用人工智能和因果推断建模,我们将对潜在的“可预防时刻”进行建模,即生命过程中有机会干预风险因素和早期决定因素以防止MLTC-M的发展的时间段。患者和公众的参与贯穿始终。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multidisciplinary ecosystem to study lifecourse determinants and prevention of early-onset burdensome multimorbidity (MELD-B) - protocol for a research collaboration.

Multidisciplinary ecosystem to study lifecourse determinants and prevention of early-onset burdensome multimorbidity (MELD-B) - protocol for a research collaboration.

Multidisciplinary ecosystem to study lifecourse determinants and prevention of early-onset burdensome multimorbidity (MELD-B) - protocol for a research collaboration.

Multidisciplinary ecosystem to study lifecourse determinants and prevention of early-onset burdensome multimorbidity (MELD-B) - protocol for a research collaboration.

Background: Most people living with multiple long-term condition multimorbidity (MLTC-M) are under 65 (defined as 'early onset'). Earlier and greater accrual of long-term conditions (LTCs) may be influenced by the timing and nature of exposure to key risk factors, wider determinants or other LTCs at different life stages. We have established a research collaboration titled 'MELD-B' to understand how wider determinants, sentinel conditions (the first LTC in the lifecourse) and LTC accrual sequence affect risk of early-onset, burdensome MLTC-M, and to inform prevention interventions.

Aim: Our aim is to identify critical periods in the lifecourse for prevention of early-onset, burdensome MLTC-M, identified through the analysis of birth cohorts and electronic health records, including artificial intelligence (AI)-enhanced analyses.

Design: We will develop deeper understanding of 'burdensomeness' and 'complexity' through a qualitative evidence synthesis and a consensus study. Using safe data environments for analyses across large, representative routine healthcare datasets and birth cohorts, we will apply AI methods to identify early-onset, burdensome MLTC-M clusters and sentinel conditions, develop semi-supervised learning to match individuals across datasets, identify determinants of burdensome clusters, and model trajectories of LTC and burden accrual. We will characterise early-life (under 18 years) risk factors for early-onset, burdensome MLTC-M and sentinel conditions. Finally, using AI and causal inference modelling, we will model potential 'preventable moments', defined as time periods in the life course where there is an opportunity for intervention on risk factors and early determinants to prevent the development of MLTC-M. Patient and public involvement is integrated throughout.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信