关于一个无限线性微分方程组的稳定性和零能控性。

Pub Date : 2023-01-01 Epub Date: 2021-12-23 DOI:10.1007/s10883-021-09587-6
Abdulla Azamov, Gafurjan Ibragimov, Khudoyor Mamayusupov, Marks Ruziboev
{"title":"关于一个无限线性微分方程组的稳定性和零能控性。","authors":"Abdulla Azamov,&nbsp;Gafurjan Ibragimov,&nbsp;Khudoyor Mamayusupov,&nbsp;Marks Ruziboev","doi":"10.1007/s10883-021-09587-6","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, the null controllability problem for a linear system in <i>ℓ</i><sup>2</sup> is considered, where the matrix of a linear operator describing the system is an infinite matrix with <math><mi>λ</mi><mo>∈</mo><mi>ℝ</mi></math> on the main diagonal and 1s above it. We show that the system is asymptotically stable if and only if <i>λ</i> ≤- 1, which shows the fine difference between the finite and the infinite-dimensional systems. When <i>λ</i> ≤- 1 we also show that the system is null controllable in large. Further we show a dependence of the stability on the norm, i.e. the same system considered <math><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>∞</mi></mrow></msup></math> is not asymptotically stable if <i>λ</i> = - 1.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516776/pdf/","citationCount":"2","resultStr":"{\"title\":\"On the Stability and Null-Controllability of an Infinite System of Linear Differential Equations.\",\"authors\":\"Abdulla Azamov,&nbsp;Gafurjan Ibragimov,&nbsp;Khudoyor Mamayusupov,&nbsp;Marks Ruziboev\",\"doi\":\"10.1007/s10883-021-09587-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, the null controllability problem for a linear system in <i>ℓ</i><sup>2</sup> is considered, where the matrix of a linear operator describing the system is an infinite matrix with <math><mi>λ</mi><mo>∈</mo><mi>ℝ</mi></math> on the main diagonal and 1s above it. We show that the system is asymptotically stable if and only if <i>λ</i> ≤- 1, which shows the fine difference between the finite and the infinite-dimensional systems. When <i>λ</i> ≤- 1 we also show that the system is null controllable in large. Further we show a dependence of the stability on the norm, i.e. the same system considered <math><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>∞</mi></mrow></msup></math> is not asymptotically stable if <i>λ</i> = - 1.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516776/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10883-021-09587-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10883-021-09587-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,一个线性系统的零可控性问题ℓ2,其中描述系统的线性算子的矩阵是λ∈2的无穷大矩阵ℝ 在主对角线上及其上的1s。我们证明了系统是渐近稳定的当且仅当λ≤- 1,它显示了有限维系统和无限维系统之间的细微差别。当λ≤- 1我们还证明了该系统在很大程度上是零可控的。此外,我们还展示了稳定性对范数的依赖性,即所考虑的同一系统ℓ∞ 不是渐近稳定的,如果λ=- 1.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Stability and Null-Controllability of an Infinite System of Linear Differential Equations.

In this work, the null controllability problem for a linear system in 2 is considered, where the matrix of a linear operator describing the system is an infinite matrix with λ on the main diagonal and 1s above it. We show that the system is asymptotically stable if and only if λ ≤- 1, which shows the fine difference between the finite and the infinite-dimensional systems. When λ ≤- 1 we also show that the system is null controllable in large. Further we show a dependence of the stability on the norm, i.e. the same system considered is not asymptotically stable if λ = - 1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信