{"title":"分光光度法测定三甲胺单加氧酶。","authors":"Shiwangi Maurya, Abhishek Singh, Gurunath Ramanathan","doi":"10.1002/prot.26597","DOIUrl":null,"url":null,"abstract":"<p><p>Trimethylamine monooxygenase (Tmm, EC-1.14.13.148) belongs to the family of flavin-containing monooxygenases that oxidize trimethylamine into trimethylamine-N-oxide (TMAO). Conventional methods for assaying Tmm are accurate over a narrow range of substrate/product concentrations. Here we report a TMAO-specific enzymatic assay for Tmm using polyallylamine hydrochloride (PAHCl)-capped MnO<sub>2</sub> nanoparticles (PAHCl@MnO<sub>2</sub>). We achieved TMAO specificity using iodoacetonitrile to remove interfering trimethylamine. The change in the concentration of TMAO is measured by observing the difference in the absorbance of 3,3',5,5'-tetramethylbenzidine (TMB) at 650 nm. The assay is tolerant to several interfering metal ions and other compounds. This method is more accessible and reliable than currently known methods. The limit of detection (LOD) and limit of quantitation (LOQ) are 1 μM and 10 μM, respectively, for direct TMAO measurement.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":"3-10"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A spectrophotometric trimethylamine monooxygenase assay.\",\"authors\":\"Shiwangi Maurya, Abhishek Singh, Gurunath Ramanathan\",\"doi\":\"10.1002/prot.26597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Trimethylamine monooxygenase (Tmm, EC-1.14.13.148) belongs to the family of flavin-containing monooxygenases that oxidize trimethylamine into trimethylamine-N-oxide (TMAO). Conventional methods for assaying Tmm are accurate over a narrow range of substrate/product concentrations. Here we report a TMAO-specific enzymatic assay for Tmm using polyallylamine hydrochloride (PAHCl)-capped MnO<sub>2</sub> nanoparticles (PAHCl@MnO<sub>2</sub>). We achieved TMAO specificity using iodoacetonitrile to remove interfering trimethylamine. The change in the concentration of TMAO is measured by observing the difference in the absorbance of 3,3',5,5'-tetramethylbenzidine (TMB) at 650 nm. The assay is tolerant to several interfering metal ions and other compounds. This method is more accessible and reliable than currently known methods. The limit of detection (LOD) and limit of quantitation (LOQ) are 1 μM and 10 μM, respectively, for direct TMAO measurement.</p>\",\"PeriodicalId\":56271,\"journal\":{\"name\":\"Proteins-Structure Function and Bioinformatics\",\"volume\":\" \",\"pages\":\"3-10\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteins-Structure Function and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prot.26597\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26597","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A spectrophotometric trimethylamine monooxygenase assay.
Trimethylamine monooxygenase (Tmm, EC-1.14.13.148) belongs to the family of flavin-containing monooxygenases that oxidize trimethylamine into trimethylamine-N-oxide (TMAO). Conventional methods for assaying Tmm are accurate over a narrow range of substrate/product concentrations. Here we report a TMAO-specific enzymatic assay for Tmm using polyallylamine hydrochloride (PAHCl)-capped MnO2 nanoparticles (PAHCl@MnO2). We achieved TMAO specificity using iodoacetonitrile to remove interfering trimethylamine. The change in the concentration of TMAO is measured by observing the difference in the absorbance of 3,3',5,5'-tetramethylbenzidine (TMB) at 650 nm. The assay is tolerant to several interfering metal ions and other compounds. This method is more accessible and reliable than currently known methods. The limit of detection (LOD) and limit of quantitation (LOQ) are 1 μM and 10 μM, respectively, for direct TMAO measurement.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.