分光光度法测定三甲胺单加氧酶。

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Proteins-Structure Function and Bioinformatics Pub Date : 2025-01-01 Epub Date: 2023-09-29 DOI:10.1002/prot.26597
Shiwangi Maurya, Abhishek Singh, Gurunath Ramanathan
{"title":"分光光度法测定三甲胺单加氧酶。","authors":"Shiwangi Maurya, Abhishek Singh, Gurunath Ramanathan","doi":"10.1002/prot.26597","DOIUrl":null,"url":null,"abstract":"<p><p>Trimethylamine monooxygenase (Tmm, EC-1.14.13.148) belongs to the family of flavin-containing monooxygenases that oxidize trimethylamine into trimethylamine-N-oxide (TMAO). Conventional methods for assaying Tmm are accurate over a narrow range of substrate/product concentrations. Here we report a TMAO-specific enzymatic assay for Tmm using polyallylamine hydrochloride (PAHCl)-capped MnO<sub>2</sub> nanoparticles (PAHCl@MnO<sub>2</sub>). We achieved TMAO specificity using iodoacetonitrile to remove interfering trimethylamine. The change in the concentration of TMAO is measured by observing the difference in the absorbance of 3,3',5,5'-tetramethylbenzidine (TMB) at 650 nm. The assay is tolerant to several interfering metal ions and other compounds. This method is more accessible and reliable than currently known methods. The limit of detection (LOD) and limit of quantitation (LOQ) are 1 μM and 10 μM, respectively, for direct TMAO measurement.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":"3-10"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A spectrophotometric trimethylamine monooxygenase assay.\",\"authors\":\"Shiwangi Maurya, Abhishek Singh, Gurunath Ramanathan\",\"doi\":\"10.1002/prot.26597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Trimethylamine monooxygenase (Tmm, EC-1.14.13.148) belongs to the family of flavin-containing monooxygenases that oxidize trimethylamine into trimethylamine-N-oxide (TMAO). Conventional methods for assaying Tmm are accurate over a narrow range of substrate/product concentrations. Here we report a TMAO-specific enzymatic assay for Tmm using polyallylamine hydrochloride (PAHCl)-capped MnO<sub>2</sub> nanoparticles (PAHCl@MnO<sub>2</sub>). We achieved TMAO specificity using iodoacetonitrile to remove interfering trimethylamine. The change in the concentration of TMAO is measured by observing the difference in the absorbance of 3,3',5,5'-tetramethylbenzidine (TMB) at 650 nm. The assay is tolerant to several interfering metal ions and other compounds. This method is more accessible and reliable than currently known methods. The limit of detection (LOD) and limit of quantitation (LOQ) are 1 μM and 10 μM, respectively, for direct TMAO measurement.</p>\",\"PeriodicalId\":56271,\"journal\":{\"name\":\"Proteins-Structure Function and Bioinformatics\",\"volume\":\" \",\"pages\":\"3-10\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteins-Structure Function and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prot.26597\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26597","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

三甲胺单加氧酶(Tmm,EC-1.14.13.148)属于含黄素的单加氧酶类家族,可将三甲胺氧化为三甲胺-N-氧化物(TMAO)。测定Tmm的常规方法在基质/产物浓度的窄范围内是准确的。在这里,我们报道了使用聚烯丙基胺盐酸盐(PAHCl)封端的MnO2纳米颗粒对Tmm的TMAO特异性酶测定(PAHCl@MnO2)。我们使用碘乙腈去除干扰三甲胺,实现了TMAO的特异性。TMAO浓度的变化是通过观察3,3’,5,5’-四甲基联苯胺(TMB)在650下的吸光度差异来测量的 nm。该测定法对几种干扰金属离子和其他化合物具有耐受性。这种方法比目前已知的方法更容易访问和可靠。检测限(LOD)和定量限(LOQ)为1 μM和10 μM,用于直接TMAO测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A spectrophotometric trimethylamine monooxygenase assay.

Trimethylamine monooxygenase (Tmm, EC-1.14.13.148) belongs to the family of flavin-containing monooxygenases that oxidize trimethylamine into trimethylamine-N-oxide (TMAO). Conventional methods for assaying Tmm are accurate over a narrow range of substrate/product concentrations. Here we report a TMAO-specific enzymatic assay for Tmm using polyallylamine hydrochloride (PAHCl)-capped MnO2 nanoparticles (PAHCl@MnO2). We achieved TMAO specificity using iodoacetonitrile to remove interfering trimethylamine. The change in the concentration of TMAO is measured by observing the difference in the absorbance of 3,3',5,5'-tetramethylbenzidine (TMB) at 650 nm. The assay is tolerant to several interfering metal ions and other compounds. This method is more accessible and reliable than currently known methods. The limit of detection (LOD) and limit of quantitation (LOQ) are 1 μM and 10 μM, respectively, for direct TMAO measurement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proteins-Structure Function and Bioinformatics
Proteins-Structure Function and Bioinformatics 生物-生化与分子生物学
CiteScore
5.90
自引率
3.40%
发文量
172
审稿时长
3 months
期刊介绍: PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信