{"title":"以知识为导向的肘关节骨折分类多视角深度课程学习。","authors":"Jun Luo, Gene Kitamura, Dooman Arefan, Emine Doganay, Ashok Panigrahy, Shandong Wu","doi":"10.1007/978-3-030-87589-3_57","DOIUrl":null,"url":null,"abstract":"<p><p>Elbow fracture diagnosis often requires patients to take both frontal and lateral views of elbow X-ray radiographs. In this paper, we propose a multiview deep learning method for an elbow fracture subtype classification task. Our strategy leverages transfer learning by first training two single-view models, one for frontal view and the other for lateral view, and then transferring the weights to the corresponding layers in the proposed multiview network architecture. Meanwhile, quantitative medical knowledge was integrated into the training process through a curriculum learning framework, which enables the model to first learn from \"easier\" samples and then transition to \"harder\" samples to reach better performance. In addition, our multiview network can work both in a dual-view setting and with a single view as input. We evaluate our method through extensive experiments on a classification task of elbow fracture with a dataset of 1,964 images. Results show that our method outperforms two related methods on bone fracture study in multiple settings, and our technique is able to boost the performance of the compared methods. The code is available at https://github.com/ljaiverson/multiview-curriculum.</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"12966 ","pages":"555-564"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557058/pdf/nihms-1933007.pdf","citationCount":"0","resultStr":"{\"title\":\"Knowledge-Guided Multiview Deep Curriculum Learning for Elbow Fracture Classification.\",\"authors\":\"Jun Luo, Gene Kitamura, Dooman Arefan, Emine Doganay, Ashok Panigrahy, Shandong Wu\",\"doi\":\"10.1007/978-3-030-87589-3_57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Elbow fracture diagnosis often requires patients to take both frontal and lateral views of elbow X-ray radiographs. In this paper, we propose a multiview deep learning method for an elbow fracture subtype classification task. Our strategy leverages transfer learning by first training two single-view models, one for frontal view and the other for lateral view, and then transferring the weights to the corresponding layers in the proposed multiview network architecture. Meanwhile, quantitative medical knowledge was integrated into the training process through a curriculum learning framework, which enables the model to first learn from \\\"easier\\\" samples and then transition to \\\"harder\\\" samples to reach better performance. In addition, our multiview network can work both in a dual-view setting and with a single view as input. We evaluate our method through extensive experiments on a classification task of elbow fracture with a dataset of 1,964 images. Results show that our method outperforms two related methods on bone fracture study in multiple settings, and our technique is able to boost the performance of the compared methods. The code is available at https://github.com/ljaiverson/multiview-curriculum.</p>\",\"PeriodicalId\":74092,\"journal\":{\"name\":\"Machine learning in medical imaging. MLMI (Workshop)\",\"volume\":\"12966 \",\"pages\":\"555-564\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557058/pdf/nihms-1933007.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning in medical imaging. MLMI (Workshop)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-87589-3_57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in medical imaging. MLMI (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-87589-3_57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Knowledge-Guided Multiview Deep Curriculum Learning for Elbow Fracture Classification.
Elbow fracture diagnosis often requires patients to take both frontal and lateral views of elbow X-ray radiographs. In this paper, we propose a multiview deep learning method for an elbow fracture subtype classification task. Our strategy leverages transfer learning by first training two single-view models, one for frontal view and the other for lateral view, and then transferring the weights to the corresponding layers in the proposed multiview network architecture. Meanwhile, quantitative medical knowledge was integrated into the training process through a curriculum learning framework, which enables the model to first learn from "easier" samples and then transition to "harder" samples to reach better performance. In addition, our multiview network can work both in a dual-view setting and with a single view as input. We evaluate our method through extensive experiments on a classification task of elbow fracture with a dataset of 1,964 images. Results show that our method outperforms two related methods on bone fracture study in multiple settings, and our technique is able to boost the performance of the compared methods. The code is available at https://github.com/ljaiverson/multiview-curriculum.