用于生物知识量化的基于结构的反向强化学习。

Amirhossein Ravari, Seyede Fatemeh Ghoreishi, Mahdi Imani
{"title":"用于生物知识量化的基于结构的反向强化学习。","authors":"Amirhossein Ravari,&nbsp;Seyede Fatemeh Ghoreishi,&nbsp;Mahdi Imani","doi":"10.1109/cai54212.2023.00126","DOIUrl":null,"url":null,"abstract":"<p><p>Gene regulatory networks (GRNs) play crucial roles in various cellular processes, including stress response, DNA repair, and the mechanisms involved in complex diseases such as cancer. Biologists are involved in most biological analyses. Thus, quantifying their policies reflected in available biological data can significantly help us to better understand these complex systems. The primary challenges preventing the utilization of existing machine learning, particularly inverse reinforcement learning techniques, to quantify biologists' knowledge are the limitations and huge amount of uncertainty in biological data. This paper leverages the network-like structure of GRNs to define expert reward functions that contain exponentially fewer parameters than regular reward models. Numerical experiments using mammalian cell cycle and synthetic gene-expression data demonstrate the superior performance of the proposed method in quantifying biologists' policies.</p>","PeriodicalId":94276,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence","volume":"2023 ","pages":"282-284"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552793/pdf/nihms-1914209.pdf","citationCount":"0","resultStr":"{\"title\":\"Structure-Based Inverse Reinforcement Learning for Quantification of Biological Knowledge.\",\"authors\":\"Amirhossein Ravari,&nbsp;Seyede Fatemeh Ghoreishi,&nbsp;Mahdi Imani\",\"doi\":\"10.1109/cai54212.2023.00126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene regulatory networks (GRNs) play crucial roles in various cellular processes, including stress response, DNA repair, and the mechanisms involved in complex diseases such as cancer. Biologists are involved in most biological analyses. Thus, quantifying their policies reflected in available biological data can significantly help us to better understand these complex systems. The primary challenges preventing the utilization of existing machine learning, particularly inverse reinforcement learning techniques, to quantify biologists' knowledge are the limitations and huge amount of uncertainty in biological data. This paper leverages the network-like structure of GRNs to define expert reward functions that contain exponentially fewer parameters than regular reward models. Numerical experiments using mammalian cell cycle and synthetic gene-expression data demonstrate the superior performance of the proposed method in quantifying biologists' policies.</p>\",\"PeriodicalId\":94276,\"journal\":{\"name\":\"2023 IEEE Conference on Artificial Intelligence\",\"volume\":\"2023 \",\"pages\":\"282-284\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552793/pdf/nihms-1914209.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cai54212.2023.00126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cai54212.2023.00126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基因调控网络(GRNs)在各种细胞过程中发挥着至关重要的作用,包括应激反应、DNA修复和癌症等复杂疾病的机制。生物学家参与了大多数生物学分析。因此,量化现有生物数据中反映的他们的政策可以大大帮助我们更好地理解这些复杂的系统。阻碍利用现有的机器学习,特别是反向强化学习技术来量化生物学家知识的主要挑战是生物数据的局限性和巨大的不确定性。本文利用GRN的类网络结构来定义专家奖励函数,该函数包含的参数比常规奖励模型少得多。使用哺乳动物细胞周期和合成基因表达数据的数值实验证明了所提出的方法在量化生物学家的政策方面的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure-Based Inverse Reinforcement Learning for Quantification of Biological Knowledge.

Gene regulatory networks (GRNs) play crucial roles in various cellular processes, including stress response, DNA repair, and the mechanisms involved in complex diseases such as cancer. Biologists are involved in most biological analyses. Thus, quantifying their policies reflected in available biological data can significantly help us to better understand these complex systems. The primary challenges preventing the utilization of existing machine learning, particularly inverse reinforcement learning techniques, to quantify biologists' knowledge are the limitations and huge amount of uncertainty in biological data. This paper leverages the network-like structure of GRNs to define expert reward functions that contain exponentially fewer parameters than regular reward models. Numerical experiments using mammalian cell cycle and synthetic gene-expression data demonstrate the superior performance of the proposed method in quantifying biologists' policies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信