Craig Brown, Jianhua Wang, Hong Jiang, Merrill F Elias
{"title":"减少同型半胱氨酸预防中风:关于近期AHA/ASA 2021预防中风和短暂性脑缺血发作患者的中风。","authors":"Craig Brown, Jianhua Wang, Hong Jiang, Merrill F Elias","doi":"10.2147/PGPM.S426421","DOIUrl":null,"url":null,"abstract":"<p><p>Reduction of secondary ischemic stroke risk following an initial stroke is an important goal. The 2021 Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack assembles opportunities for up to 80% secondary stroke reduction. Homocysteine reduction was not included in the recommendations. The reduction of homocysteine with low doses of folic acid has been shown to reduce ischemic stroke and all stroke. This has been obscured by studies using high doses of folic acid and cyanocobalamin in patients with renal failure and Methylenetetrahydrofolate reductase (MTHFR) polymorphisms. The confounding impacts of high dose folic acid and cyanocobalamin toxicity in renal failure and MTHFR C677T subgroups are discussed. New studies show that their toxicity is due to non-bioequivalence to the natural dietary forms, L-methylfolate and methylcobalamin. Low doses of folic acid and cyanocobalamin are safer than high doses for these subpopulations. Even lower toxicity with greater effectiveness for reducing homocysteine is seen with L-methylfolate and methylcobalamin, which are safe at high doses. Retinal vascular imaging is a noninvasive method for evaluating central nervous system (CNS) microangiopathy. A formulation containing l-methylfolate and methylcobalamin has been shown to reduce homocysteine and increase perfusion in diabetic retinopathy. This supports homocysteine intervention for CNS ischemia. Future ischemic stroke intervention studies could benefit from monitoring retinal perfusion to estimate the impact of risk reduction strategies. The omission of a recommendation for homocysteine and secondary stroke reduction through the use of B vitamins should be reconsidered in light of re-analysis of major B vitamin intervention studies and new technologies for monitoring CNS perfusion. We recommend revision of the 2021 Guideline to include homocysteine reduction with low doses of folic acid and cyanocobalamin, or better yet, L-methylfolate and methylcobalamin, making a good clinical guideline better.</p>","PeriodicalId":56015,"journal":{"name":"Pharmacogenomics & Personalized Medicine","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ee/88/pgpm-16-895.PMC10559895.pdf","citationCount":"0","resultStr":"{\"title\":\"Homocysteine Reduction for Stroke Prevention: Regarding the Recent AHA/ASA 2021 Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack.\",\"authors\":\"Craig Brown, Jianhua Wang, Hong Jiang, Merrill F Elias\",\"doi\":\"10.2147/PGPM.S426421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reduction of secondary ischemic stroke risk following an initial stroke is an important goal. The 2021 Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack assembles opportunities for up to 80% secondary stroke reduction. Homocysteine reduction was not included in the recommendations. The reduction of homocysteine with low doses of folic acid has been shown to reduce ischemic stroke and all stroke. This has been obscured by studies using high doses of folic acid and cyanocobalamin in patients with renal failure and Methylenetetrahydrofolate reductase (MTHFR) polymorphisms. The confounding impacts of high dose folic acid and cyanocobalamin toxicity in renal failure and MTHFR C677T subgroups are discussed. New studies show that their toxicity is due to non-bioequivalence to the natural dietary forms, L-methylfolate and methylcobalamin. Low doses of folic acid and cyanocobalamin are safer than high doses for these subpopulations. Even lower toxicity with greater effectiveness for reducing homocysteine is seen with L-methylfolate and methylcobalamin, which are safe at high doses. Retinal vascular imaging is a noninvasive method for evaluating central nervous system (CNS) microangiopathy. A formulation containing l-methylfolate and methylcobalamin has been shown to reduce homocysteine and increase perfusion in diabetic retinopathy. This supports homocysteine intervention for CNS ischemia. Future ischemic stroke intervention studies could benefit from monitoring retinal perfusion to estimate the impact of risk reduction strategies. The omission of a recommendation for homocysteine and secondary stroke reduction through the use of B vitamins should be reconsidered in light of re-analysis of major B vitamin intervention studies and new technologies for monitoring CNS perfusion. We recommend revision of the 2021 Guideline to include homocysteine reduction with low doses of folic acid and cyanocobalamin, or better yet, L-methylfolate and methylcobalamin, making a good clinical guideline better.</p>\",\"PeriodicalId\":56015,\"journal\":{\"name\":\"Pharmacogenomics & Personalized Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ee/88/pgpm-16-895.PMC10559895.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacogenomics & Personalized Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/PGPM.S426421\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenomics & Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/PGPM.S426421","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Homocysteine Reduction for Stroke Prevention: Regarding the Recent AHA/ASA 2021 Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack.
Reduction of secondary ischemic stroke risk following an initial stroke is an important goal. The 2021 Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack assembles opportunities for up to 80% secondary stroke reduction. Homocysteine reduction was not included in the recommendations. The reduction of homocysteine with low doses of folic acid has been shown to reduce ischemic stroke and all stroke. This has been obscured by studies using high doses of folic acid and cyanocobalamin in patients with renal failure and Methylenetetrahydrofolate reductase (MTHFR) polymorphisms. The confounding impacts of high dose folic acid and cyanocobalamin toxicity in renal failure and MTHFR C677T subgroups are discussed. New studies show that their toxicity is due to non-bioequivalence to the natural dietary forms, L-methylfolate and methylcobalamin. Low doses of folic acid and cyanocobalamin are safer than high doses for these subpopulations. Even lower toxicity with greater effectiveness for reducing homocysteine is seen with L-methylfolate and methylcobalamin, which are safe at high doses. Retinal vascular imaging is a noninvasive method for evaluating central nervous system (CNS) microangiopathy. A formulation containing l-methylfolate and methylcobalamin has been shown to reduce homocysteine and increase perfusion in diabetic retinopathy. This supports homocysteine intervention for CNS ischemia. Future ischemic stroke intervention studies could benefit from monitoring retinal perfusion to estimate the impact of risk reduction strategies. The omission of a recommendation for homocysteine and secondary stroke reduction through the use of B vitamins should be reconsidered in light of re-analysis of major B vitamin intervention studies and new technologies for monitoring CNS perfusion. We recommend revision of the 2021 Guideline to include homocysteine reduction with low doses of folic acid and cyanocobalamin, or better yet, L-methylfolate and methylcobalamin, making a good clinical guideline better.
期刊介绍:
Pharmacogenomics and Personalized Medicine is an international, peer-reviewed, open-access journal characterizing the influence of genotype on pharmacology leading to the development of personalized treatment programs and individualized drug selection for improved safety, efficacy and sustainability.
In particular, emphasis will be given to:
Genomic and proteomic profiling
Genetics and drug metabolism
Targeted drug identification and discovery
Optimizing drug selection & dosage based on patient''s genetic profile
Drug related morbidity & mortality intervention
Advanced disease screening and targeted therapeutic intervention
Genetic based vaccine development
Patient satisfaction and preference
Health economic evaluations
Practical and organizational issues in the development and implementation of personalized medicine programs.