从玩同一游戏的许多人身上学习决策特征。

Michael J Mendelson, Mehdi Azabou, Suma Jacob, Nicola Grissom, David Darrow, Becket Ebitz, Alexander Herman, Eva L Dyer
{"title":"从玩同一游戏的许多人身上学习决策特征。","authors":"Michael J Mendelson,&nbsp;Mehdi Azabou,&nbsp;Suma Jacob,&nbsp;Nicola Grissom,&nbsp;David Darrow,&nbsp;Becket Ebitz,&nbsp;Alexander Herman,&nbsp;Eva L Dyer","doi":"10.1109/ner52421.2023.10123846","DOIUrl":null,"url":null,"abstract":"<p><p>Human behavior is incredibly complex and the factors that drive decision making-from instinct, to strategy, to biases between individuals-often vary over multiple timescales. In this paper, we design a predictive framework that learns representations to encode an individual's 'behavioral style', i.e. long-term behavioral trends, while simultaneously predicting future actions and choices. The model explicitly separates representations into three latent spaces: the recent past space, the short-term space, and the long-term space where we hope to capture individual differences. To simultaneously extract both global and local variables from complex human behavior, our method combines a multi-scale temporal convolutional network with latent prediction tasks, where we encourage embeddings across the entire sequence, as well as subsets of the sequence, to be mapped to similar points in the latent space. We develop and apply our method to a large-scale behavioral dataset from 1,000 humans playing a 3-armed bandit task, and analyze what our model's resulting embeddings reveal about the human decision making process. In addition to predicting future choices, we show that our model can learn rich representations of human behavior over multiple timescales and provide signatures of differences in individuals.</p>","PeriodicalId":73414,"journal":{"name":"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering","volume":"2023 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10559224/pdf/nihms-1931965.pdf","citationCount":"0","resultStr":"{\"title\":\"Learning signatures of decision making from many individuals playing the same game.\",\"authors\":\"Michael J Mendelson,&nbsp;Mehdi Azabou,&nbsp;Suma Jacob,&nbsp;Nicola Grissom,&nbsp;David Darrow,&nbsp;Becket Ebitz,&nbsp;Alexander Herman,&nbsp;Eva L Dyer\",\"doi\":\"10.1109/ner52421.2023.10123846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human behavior is incredibly complex and the factors that drive decision making-from instinct, to strategy, to biases between individuals-often vary over multiple timescales. In this paper, we design a predictive framework that learns representations to encode an individual's 'behavioral style', i.e. long-term behavioral trends, while simultaneously predicting future actions and choices. The model explicitly separates representations into three latent spaces: the recent past space, the short-term space, and the long-term space where we hope to capture individual differences. To simultaneously extract both global and local variables from complex human behavior, our method combines a multi-scale temporal convolutional network with latent prediction tasks, where we encourage embeddings across the entire sequence, as well as subsets of the sequence, to be mapped to similar points in the latent space. We develop and apply our method to a large-scale behavioral dataset from 1,000 humans playing a 3-armed bandit task, and analyze what our model's resulting embeddings reveal about the human decision making process. In addition to predicting future choices, we show that our model can learn rich representations of human behavior over multiple timescales and provide signatures of differences in individuals.</p>\",\"PeriodicalId\":73414,\"journal\":{\"name\":\"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering\",\"volume\":\"2023 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10559224/pdf/nihms-1931965.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ner52421.2023.10123846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ner52421.2023.10123846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人类行为极其复杂,从本能到策略,再到个体之间的偏见,驱动决策的因素往往在多个时间尺度上有所不同。在本文中,我们设计了一个预测框架,该框架学习表征来编码个人的“行为风格”,即长期行为趋势,同时预测未来的行动和选择。该模型明确地将表征分为三个潜在空间:最近的过去空间、短期空间和我们希望捕捉个体差异的长期空间。为了从复杂的人类行为中同时提取全局和局部变量,我们的方法将多尺度时间卷积网络与潜在预测任务相结合,在潜在预测任务中,我们鼓励在整个序列以及序列的子集上进行嵌入,以映射到潜在空间中的相似点。我们开发了我们的方法,并将其应用于1000名执行3臂土匪任务的人类的大规模行为数据集,并分析了我们模型的嵌入结果揭示了人类决策过程。除了预测未来的选择,我们还表明,我们的模型可以在多个时间尺度上学习人类行为的丰富表征,并提供个体差异的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning signatures of decision making from many individuals playing the same game.

Human behavior is incredibly complex and the factors that drive decision making-from instinct, to strategy, to biases between individuals-often vary over multiple timescales. In this paper, we design a predictive framework that learns representations to encode an individual's 'behavioral style', i.e. long-term behavioral trends, while simultaneously predicting future actions and choices. The model explicitly separates representations into three latent spaces: the recent past space, the short-term space, and the long-term space where we hope to capture individual differences. To simultaneously extract both global and local variables from complex human behavior, our method combines a multi-scale temporal convolutional network with latent prediction tasks, where we encourage embeddings across the entire sequence, as well as subsets of the sequence, to be mapped to similar points in the latent space. We develop and apply our method to a large-scale behavioral dataset from 1,000 humans playing a 3-armed bandit task, and analyze what our model's resulting embeddings reveal about the human decision making process. In addition to predicting future choices, we show that our model can learn rich representations of human behavior over multiple timescales and provide signatures of differences in individuals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信