{"title":"结核分枝杆菌中MazE9抗毒素溶液结构和转录调控的见解。","authors":"Tanaya Basu Roy, Siddhartha P Sarma","doi":"10.1002/prot.26589","DOIUrl":null,"url":null,"abstract":"<p><p>The present study endeavors to decode the details of the transcriptional autoregulation effected by the MazE9 antitoxin of the Mycobacterium tuberculosis MazEF9 toxin-antitoxin system. Regulation of this bicistronic operon at the level of transcription is a critical biochemical process that is key for the organism's stress adaptation and virulence. Here, we have reported the solution structure of the DNA binding domain of MazE9 and scrutinized the thermodynamic and kinetic parameters operational in its interaction with the promoter/operator region, specific to the mazEF9 operon. A HADDOCK model of MazE9 bound to its operator DNA has been calculated based on the information on interacting residues obtained from these studies. The thermodynamics and kinetics of the interaction of MazE9 with the functionally related mazEF6 operon indicate that the potential for intracellular cross-regulation is unlikely. An interesting feature of MazE9 is the cis ⇌ trans conformational isomerization of proline residues in the intrinsically disordered C-terminal domain of this antitoxin.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":"176-196"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into the solution structure and transcriptional regulation of the MazE9 antitoxin in Mycobacterium tuberculosis.\",\"authors\":\"Tanaya Basu Roy, Siddhartha P Sarma\",\"doi\":\"10.1002/prot.26589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study endeavors to decode the details of the transcriptional autoregulation effected by the MazE9 antitoxin of the Mycobacterium tuberculosis MazEF9 toxin-antitoxin system. Regulation of this bicistronic operon at the level of transcription is a critical biochemical process that is key for the organism's stress adaptation and virulence. Here, we have reported the solution structure of the DNA binding domain of MazE9 and scrutinized the thermodynamic and kinetic parameters operational in its interaction with the promoter/operator region, specific to the mazEF9 operon. A HADDOCK model of MazE9 bound to its operator DNA has been calculated based on the information on interacting residues obtained from these studies. The thermodynamics and kinetics of the interaction of MazE9 with the functionally related mazEF6 operon indicate that the potential for intracellular cross-regulation is unlikely. An interesting feature of MazE9 is the cis ⇌ trans conformational isomerization of proline residues in the intrinsically disordered C-terminal domain of this antitoxin.</p>\",\"PeriodicalId\":56271,\"journal\":{\"name\":\"Proteins-Structure Function and Bioinformatics\",\"volume\":\" \",\"pages\":\"176-196\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteins-Structure Function and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prot.26589\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26589","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Insights into the solution structure and transcriptional regulation of the MazE9 antitoxin in Mycobacterium tuberculosis.
The present study endeavors to decode the details of the transcriptional autoregulation effected by the MazE9 antitoxin of the Mycobacterium tuberculosis MazEF9 toxin-antitoxin system. Regulation of this bicistronic operon at the level of transcription is a critical biochemical process that is key for the organism's stress adaptation and virulence. Here, we have reported the solution structure of the DNA binding domain of MazE9 and scrutinized the thermodynamic and kinetic parameters operational in its interaction with the promoter/operator region, specific to the mazEF9 operon. A HADDOCK model of MazE9 bound to its operator DNA has been calculated based on the information on interacting residues obtained from these studies. The thermodynamics and kinetics of the interaction of MazE9 with the functionally related mazEF6 operon indicate that the potential for intracellular cross-regulation is unlikely. An interesting feature of MazE9 is the cis ⇌ trans conformational isomerization of proline residues in the intrinsically disordered C-terminal domain of this antitoxin.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.