Reynand Jay Canoy, Anna Shmakova, Anna Karpukhina, Nikolai Lomov, Eugenia Tiukacheva, Yana Kozhevnikova, Franck André, Diego Germini, Yegor Vassetzky
{"title":"癌症相关染色体易位的特异性与DNA双链断裂后的邻近性和随后的选择有关。","authors":"Reynand Jay Canoy, Anna Shmakova, Anna Karpukhina, Nikolai Lomov, Eugenia Tiukacheva, Yana Kozhevnikova, Franck André, Diego Germini, Yegor Vassetzky","doi":"10.1093/narcan/zcad049","DOIUrl":null,"url":null,"abstract":"<p><p>Most cancer-related chromosomal translocations appear to be cell type specific. It is currently unknown why different chromosomal translocations occur in different cells. This can be due to either the occurrence of particular translocations in specific cell types or adaptive survival advantage conferred by translocations only in specific cells. We experimentally addressed this question by double-strand break (DSB) induction at <i>MYC</i>, <i>IGH</i>, <i>AML</i> and <i>ETO</i> loci in the same cell to generate chromosomal translocations in different cell lineages. Our results show that any translocation can potentially arise in any cell type. We have analyzed different factors that could affect the frequency of the translocations, and only the spatial proximity between gene loci after the DSB induction correlated with the resulting translocation frequency, supporting the 'breakage-first' model. Furthermore, upon long-term culture of cells with the generated chromosomal translocations, only oncogenic <i>MYC</i>-<i>IGH</i> and <i>AML</i>-<i>ETO</i> translocations persisted over a 60-day period. Overall, the results suggest that chromosomal translocation can be generated after DSB induction in any type of cell, but whether the cell with the translocation would persist in a cell population depends on the cell type-specific selective survival advantage that the chromosomal translocation confers to the cell.</p>","PeriodicalId":94149,"journal":{"name":"NAR cancer","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e3/ca/zcad049.PMC10518054.pdf","citationCount":"0","resultStr":"{\"title\":\"Specificity of cancer-related chromosomal translocations is linked to proximity after the DNA double-strand break and subsequent selection.\",\"authors\":\"Reynand Jay Canoy, Anna Shmakova, Anna Karpukhina, Nikolai Lomov, Eugenia Tiukacheva, Yana Kozhevnikova, Franck André, Diego Germini, Yegor Vassetzky\",\"doi\":\"10.1093/narcan/zcad049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most cancer-related chromosomal translocations appear to be cell type specific. It is currently unknown why different chromosomal translocations occur in different cells. This can be due to either the occurrence of particular translocations in specific cell types or adaptive survival advantage conferred by translocations only in specific cells. We experimentally addressed this question by double-strand break (DSB) induction at <i>MYC</i>, <i>IGH</i>, <i>AML</i> and <i>ETO</i> loci in the same cell to generate chromosomal translocations in different cell lineages. Our results show that any translocation can potentially arise in any cell type. We have analyzed different factors that could affect the frequency of the translocations, and only the spatial proximity between gene loci after the DSB induction correlated with the resulting translocation frequency, supporting the 'breakage-first' model. Furthermore, upon long-term culture of cells with the generated chromosomal translocations, only oncogenic <i>MYC</i>-<i>IGH</i> and <i>AML</i>-<i>ETO</i> translocations persisted over a 60-day period. Overall, the results suggest that chromosomal translocation can be generated after DSB induction in any type of cell, but whether the cell with the translocation would persist in a cell population depends on the cell type-specific selective survival advantage that the chromosomal translocation confers to the cell.</p>\",\"PeriodicalId\":94149,\"journal\":{\"name\":\"NAR cancer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e3/ca/zcad049.PMC10518054.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAR cancer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/narcan/zcad049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/narcan/zcad049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Specificity of cancer-related chromosomal translocations is linked to proximity after the DNA double-strand break and subsequent selection.
Most cancer-related chromosomal translocations appear to be cell type specific. It is currently unknown why different chromosomal translocations occur in different cells. This can be due to either the occurrence of particular translocations in specific cell types or adaptive survival advantage conferred by translocations only in specific cells. We experimentally addressed this question by double-strand break (DSB) induction at MYC, IGH, AML and ETO loci in the same cell to generate chromosomal translocations in different cell lineages. Our results show that any translocation can potentially arise in any cell type. We have analyzed different factors that could affect the frequency of the translocations, and only the spatial proximity between gene loci after the DSB induction correlated with the resulting translocation frequency, supporting the 'breakage-first' model. Furthermore, upon long-term culture of cells with the generated chromosomal translocations, only oncogenic MYC-IGH and AML-ETO translocations persisted over a 60-day period. Overall, the results suggest that chromosomal translocation can be generated after DSB induction in any type of cell, but whether the cell with the translocation would persist in a cell population depends on the cell type-specific selective survival advantage that the chromosomal translocation confers to the cell.