Yang Tae Kim , Byong Seo Park , Hye Rim Yang , Seon Yi , Il Seong Nam-Goong , Jae Geun Kim
{"title":"探讨下丘脑在介导顺铂诱导的负能量平衡中的潜在作用。","authors":"Yang Tae Kim , Byong Seo Park , Hye Rim Yang , Seon Yi , Il Seong Nam-Goong , Jae Geun Kim","doi":"10.1016/j.cbi.2023.110733","DOIUrl":null,"url":null,"abstract":"<div><p>Cisplatin is a chemotherapeutic drug commonly used for treating different types of cancer. However, long-term use can lead to side effects, including anorexia, nausea, vomiting, and weight loss, which negatively affect the patient's quality of life and ability to undergo chemotherapy. This study aimed to investigate the mechanisms underlying the development of a negative energy balance during cisplatin treatment. Mice treated with cisplatin exhibit reduced food intake, body weight, and energy expenditure. We observed altered neuronal activity in the hypothalamic nuclei involved in the regulation of energy metabolism in cisplatin-treated mice. In addition, we observed activation of microglia and inflammation in the hypothalamus following treatment with cisplatin. Consistent with this finding, inhibition of microglial activation effectively rescued cisplatin-induced anorexia and body weight loss. The present study identified the role of hypothalamic neurons and inflammation linked to microglial activation in the anorexia and body weight loss observed during cisplatin treatment. These findings provide insight into the mechanisms underlying the development of metabolic abnormalities during cisplatin treatment and suggest new strategies for managing these side effects.</p></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"385 ","pages":"Article 110733"},"PeriodicalIF":4.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the potential hypothalamic role in mediating cisplatin-induced negative energy balance\",\"authors\":\"Yang Tae Kim , Byong Seo Park , Hye Rim Yang , Seon Yi , Il Seong Nam-Goong , Jae Geun Kim\",\"doi\":\"10.1016/j.cbi.2023.110733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cisplatin is a chemotherapeutic drug commonly used for treating different types of cancer. However, long-term use can lead to side effects, including anorexia, nausea, vomiting, and weight loss, which negatively affect the patient's quality of life and ability to undergo chemotherapy. This study aimed to investigate the mechanisms underlying the development of a negative energy balance during cisplatin treatment. Mice treated with cisplatin exhibit reduced food intake, body weight, and energy expenditure. We observed altered neuronal activity in the hypothalamic nuclei involved in the regulation of energy metabolism in cisplatin-treated mice. In addition, we observed activation of microglia and inflammation in the hypothalamus following treatment with cisplatin. Consistent with this finding, inhibition of microglial activation effectively rescued cisplatin-induced anorexia and body weight loss. The present study identified the role of hypothalamic neurons and inflammation linked to microglial activation in the anorexia and body weight loss observed during cisplatin treatment. These findings provide insight into the mechanisms underlying the development of metabolic abnormalities during cisplatin treatment and suggest new strategies for managing these side effects.</p></div>\",\"PeriodicalId\":274,\"journal\":{\"name\":\"Chemico-Biological Interactions\",\"volume\":\"385 \",\"pages\":\"Article 110733\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemico-Biological Interactions\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009279723004003\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009279723004003","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exploring the potential hypothalamic role in mediating cisplatin-induced negative energy balance
Cisplatin is a chemotherapeutic drug commonly used for treating different types of cancer. However, long-term use can lead to side effects, including anorexia, nausea, vomiting, and weight loss, which negatively affect the patient's quality of life and ability to undergo chemotherapy. This study aimed to investigate the mechanisms underlying the development of a negative energy balance during cisplatin treatment. Mice treated with cisplatin exhibit reduced food intake, body weight, and energy expenditure. We observed altered neuronal activity in the hypothalamic nuclei involved in the regulation of energy metabolism in cisplatin-treated mice. In addition, we observed activation of microglia and inflammation in the hypothalamus following treatment with cisplatin. Consistent with this finding, inhibition of microglial activation effectively rescued cisplatin-induced anorexia and body weight loss. The present study identified the role of hypothalamic neurons and inflammation linked to microglial activation in the anorexia and body weight loss observed during cisplatin treatment. These findings provide insight into the mechanisms underlying the development of metabolic abnormalities during cisplatin treatment and suggest new strategies for managing these side effects.
期刊介绍:
Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.