{"title":"近似k距离集。","authors":"Nóra Frankl, Andrey Kupavskii","doi":"10.1007/s00454-023-00489-x","DOIUrl":null,"url":null,"abstract":"<p><p>We say that a set of points <math><mrow><mi>S</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mi>d</mi></msup></mrow></math> is an <math><mi>ε</mi></math>-nearly <i>k</i>-distance set if there exist <math><mrow><mn>1</mn><mo>≤</mo><msub><mi>t</mi><mn>1</mn></msub><mo>≤</mo><mo>…</mo><mo>≤</mo><msub><mi>t</mi><mi>k</mi></msub></mrow></math>, such that the distance between any two distinct points in <i>S</i> falls into <math><mrow><mrow><mo>[</mo><msub><mi>t</mi><mn>1</mn></msub><mo>,</mo><msub><mi>t</mi><mn>1</mn></msub><mo>+</mo><mi>ε</mi><mo>]</mo></mrow><mo>∪</mo><mo>⋯</mo><mo>∪</mo><mrow><mo>[</mo><msub><mi>t</mi><mi>k</mi></msub><mo>,</mo><msub><mi>t</mi><mi>k</mi></msub><mo>+</mo><mi>ε</mi><mo>]</mo></mrow></mrow></math>. In this paper, we study the quantity <dispformula><math><mrow><mtable><mtr><mtd><mrow><msub><mi>M</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><mo>=</mo><munder><mo>lim</mo><mrow><mi>ε</mi><mo>→</mo><mn>0</mn></mrow></munder><mo>max</mo><mrow><mo>{</mo><mo>|</mo><mi>S</mi><mo>|</mo><mo>:</mo><mi>S</mi><mspace></mspace><mspace></mspace><mtext>is an</mtext><mspace></mspace><mi>ε</mi><mtext>-nearly</mtext><mspace></mspace><mi>k</mi><mtext>-distance set in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mi>d</mi></msup><mo>}</mo></mrow></mrow></mtd></mtr></mtable></mrow></math></dispformula>and its relation to the classical quantity <math><mrow><msub><mi>m</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math>: the size of the largest <i>k</i>-distance set in <math><msup><mrow><mi>R</mi></mrow><mi>d</mi></msup></math>. We obtain that <math><mrow><msub><mi>M</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>m</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math> for <math><mrow><mi>k</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></mrow></math>, as well as for any fixed <i>k</i>, provided that <i>d</i> is sufficiently large. The last result answers a question, proposed by Erdős, Makai, and Pach. We also address a closely related Turán-type problem, studied by Erdős, Makai, Pach, and Spencer in the 90s: given <i>n</i> points in <math><msup><mrow><mi>R</mi></mrow><mi>d</mi></msup></math>, how many pairs of them form a distance that belongs to <math><mrow><mrow><mo>[</mo><msub><mi>t</mi><mn>1</mn></msub><mo>,</mo><msub><mi>t</mi><mn>1</mn></msub><mo>+</mo><mn>1</mn><mo>]</mo></mrow><mo>∪</mo><mo>⋯</mo><mo>∪</mo><mrow><mo>[</mo><msub><mi>t</mi><mi>k</mi></msub><mo>,</mo><msub><mi>t</mi><mi>k</mi></msub><mo>+</mo><mn>1</mn><mo>]</mo></mrow></mrow></math>, where <math><mrow><msub><mi>t</mi><mn>1</mn></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mi>t</mi><mi>k</mi></msub></mrow></math> are fixed and any two points in the set are at distance at least 1 apart? We establish the connection between this quantity and a quantity closely related to <math><mrow><msub><mi>M</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow></math>, as well as obtain an exact answer for the same ranges <i>k</i>, <i>d</i> as above.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"70 3","pages":"455-494"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550902/pdf/","citationCount":"1","resultStr":"{\"title\":\"Nearly <i>k</i>-Distance Sets.\",\"authors\":\"Nóra Frankl, Andrey Kupavskii\",\"doi\":\"10.1007/s00454-023-00489-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We say that a set of points <math><mrow><mi>S</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mi>d</mi></msup></mrow></math> is an <math><mi>ε</mi></math>-nearly <i>k</i>-distance set if there exist <math><mrow><mn>1</mn><mo>≤</mo><msub><mi>t</mi><mn>1</mn></msub><mo>≤</mo><mo>…</mo><mo>≤</mo><msub><mi>t</mi><mi>k</mi></msub></mrow></math>, such that the distance between any two distinct points in <i>S</i> falls into <math><mrow><mrow><mo>[</mo><msub><mi>t</mi><mn>1</mn></msub><mo>,</mo><msub><mi>t</mi><mn>1</mn></msub><mo>+</mo><mi>ε</mi><mo>]</mo></mrow><mo>∪</mo><mo>⋯</mo><mo>∪</mo><mrow><mo>[</mo><msub><mi>t</mi><mi>k</mi></msub><mo>,</mo><msub><mi>t</mi><mi>k</mi></msub><mo>+</mo><mi>ε</mi><mo>]</mo></mrow></mrow></math>. In this paper, we study the quantity <dispformula><math><mrow><mtable><mtr><mtd><mrow><msub><mi>M</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><mo>=</mo><munder><mo>lim</mo><mrow><mi>ε</mi><mo>→</mo><mn>0</mn></mrow></munder><mo>max</mo><mrow><mo>{</mo><mo>|</mo><mi>S</mi><mo>|</mo><mo>:</mo><mi>S</mi><mspace></mspace><mspace></mspace><mtext>is an</mtext><mspace></mspace><mi>ε</mi><mtext>-nearly</mtext><mspace></mspace><mi>k</mi><mtext>-distance set in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mi>d</mi></msup><mo>}</mo></mrow></mrow></mtd></mtr></mtable></mrow></math></dispformula>and its relation to the classical quantity <math><mrow><msub><mi>m</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math>: the size of the largest <i>k</i>-distance set in <math><msup><mrow><mi>R</mi></mrow><mi>d</mi></msup></math>. We obtain that <math><mrow><msub><mi>M</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>m</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math> for <math><mrow><mi>k</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></mrow></math>, as well as for any fixed <i>k</i>, provided that <i>d</i> is sufficiently large. The last result answers a question, proposed by Erdős, Makai, and Pach. We also address a closely related Turán-type problem, studied by Erdős, Makai, Pach, and Spencer in the 90s: given <i>n</i> points in <math><msup><mrow><mi>R</mi></mrow><mi>d</mi></msup></math>, how many pairs of them form a distance that belongs to <math><mrow><mrow><mo>[</mo><msub><mi>t</mi><mn>1</mn></msub><mo>,</mo><msub><mi>t</mi><mn>1</mn></msub><mo>+</mo><mn>1</mn><mo>]</mo></mrow><mo>∪</mo><mo>⋯</mo><mo>∪</mo><mrow><mo>[</mo><msub><mi>t</mi><mi>k</mi></msub><mo>,</mo><msub><mi>t</mi><mi>k</mi></msub><mo>+</mo><mn>1</mn><mo>]</mo></mrow></mrow></math>, where <math><mrow><msub><mi>t</mi><mn>1</mn></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mi>t</mi><mi>k</mi></msub></mrow></math> are fixed and any two points in the set are at distance at least 1 apart? We establish the connection between this quantity and a quantity closely related to <math><mrow><msub><mi>M</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow></math>, as well as obtain an exact answer for the same ranges <i>k</i>, <i>d</i> as above.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"70 3\",\"pages\":\"455-494\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550902/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00489-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00489-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/6 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
We say that a set of points is an -nearly k-distance set if there exist , such that the distance between any two distinct points in S falls into . In this paper, we study the quantity and its relation to the classical quantity : the size of the largest k-distance set in . We obtain that for , as well as for any fixed k, provided that d is sufficiently large. The last result answers a question, proposed by Erdős, Makai, and Pach. We also address a closely related Turán-type problem, studied by Erdős, Makai, Pach, and Spencer in the 90s: given n points in , how many pairs of them form a distance that belongs to , where are fixed and any two points in the set are at distance at least 1 apart? We establish the connection between this quantity and a quantity closely related to , as well as obtain an exact answer for the same ranges k, d as above.
期刊介绍:
Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.