近似k距离集。

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Discrete & Computational Geometry Pub Date : 2023-01-01 Epub Date: 2023-06-06 DOI:10.1007/s00454-023-00489-x
Nóra Frankl, Andrey Kupavskii
{"title":"近似k距离集。","authors":"Nóra Frankl,&nbsp;Andrey Kupavskii","doi":"10.1007/s00454-023-00489-x","DOIUrl":null,"url":null,"abstract":"<p><p>We say that a set of points <math><mrow><mi>S</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mi>d</mi></msup></mrow></math> is an <math><mi>ε</mi></math>-nearly <i>k</i>-distance set if there exist <math><mrow><mn>1</mn><mo>≤</mo><msub><mi>t</mi><mn>1</mn></msub><mo>≤</mo><mo>…</mo><mo>≤</mo><msub><mi>t</mi><mi>k</mi></msub></mrow></math>, such that the distance between any two distinct points in <i>S</i> falls into <math><mrow><mrow><mo>[</mo><msub><mi>t</mi><mn>1</mn></msub><mo>,</mo><msub><mi>t</mi><mn>1</mn></msub><mo>+</mo><mi>ε</mi><mo>]</mo></mrow><mo>∪</mo><mo>⋯</mo><mo>∪</mo><mrow><mo>[</mo><msub><mi>t</mi><mi>k</mi></msub><mo>,</mo><msub><mi>t</mi><mi>k</mi></msub><mo>+</mo><mi>ε</mi><mo>]</mo></mrow></mrow></math>. In this paper, we study the quantity <dispformula><math><mrow><mtable><mtr><mtd><mrow><msub><mi>M</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><mo>=</mo><munder><mo>lim</mo><mrow><mi>ε</mi><mo>→</mo><mn>0</mn></mrow></munder><mo>max</mo><mrow><mo>{</mo><mo>|</mo><mi>S</mi><mo>|</mo><mo>:</mo><mi>S</mi><mspace></mspace><mspace></mspace><mtext>is an</mtext><mspace></mspace><mi>ε</mi><mtext>-nearly</mtext><mspace></mspace><mi>k</mi><mtext>-distance set in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mi>d</mi></msup><mo>}</mo></mrow></mrow></mtd></mtr></mtable></mrow></math></dispformula>and its relation to the classical quantity <math><mrow><msub><mi>m</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math>: the size of the largest <i>k</i>-distance set in <math><msup><mrow><mi>R</mi></mrow><mi>d</mi></msup></math>. We obtain that <math><mrow><msub><mi>M</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>m</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math> for <math><mrow><mi>k</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></mrow></math>, as well as for any fixed <i>k</i>, provided that <i>d</i> is sufficiently large. The last result answers a question, proposed by Erdős, Makai, and Pach. We also address a closely related Turán-type problem, studied by Erdős, Makai, Pach, and Spencer in the 90s: given <i>n</i> points in <math><msup><mrow><mi>R</mi></mrow><mi>d</mi></msup></math>, how many pairs of them form a distance that belongs to <math><mrow><mrow><mo>[</mo><msub><mi>t</mi><mn>1</mn></msub><mo>,</mo><msub><mi>t</mi><mn>1</mn></msub><mo>+</mo><mn>1</mn><mo>]</mo></mrow><mo>∪</mo><mo>⋯</mo><mo>∪</mo><mrow><mo>[</mo><msub><mi>t</mi><mi>k</mi></msub><mo>,</mo><msub><mi>t</mi><mi>k</mi></msub><mo>+</mo><mn>1</mn><mo>]</mo></mrow></mrow></math>, where <math><mrow><msub><mi>t</mi><mn>1</mn></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mi>t</mi><mi>k</mi></msub></mrow></math> are fixed and any two points in the set are at distance at least 1 apart? We establish the connection between this quantity and a quantity closely related to <math><mrow><msub><mi>M</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow></math>, as well as obtain an exact answer for the same ranges <i>k</i>, <i>d</i> as above.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"70 3","pages":"455-494"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550902/pdf/","citationCount":"1","resultStr":"{\"title\":\"Nearly <i>k</i>-Distance Sets.\",\"authors\":\"Nóra Frankl,&nbsp;Andrey Kupavskii\",\"doi\":\"10.1007/s00454-023-00489-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We say that a set of points <math><mrow><mi>S</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mi>d</mi></msup></mrow></math> is an <math><mi>ε</mi></math>-nearly <i>k</i>-distance set if there exist <math><mrow><mn>1</mn><mo>≤</mo><msub><mi>t</mi><mn>1</mn></msub><mo>≤</mo><mo>…</mo><mo>≤</mo><msub><mi>t</mi><mi>k</mi></msub></mrow></math>, such that the distance between any two distinct points in <i>S</i> falls into <math><mrow><mrow><mo>[</mo><msub><mi>t</mi><mn>1</mn></msub><mo>,</mo><msub><mi>t</mi><mn>1</mn></msub><mo>+</mo><mi>ε</mi><mo>]</mo></mrow><mo>∪</mo><mo>⋯</mo><mo>∪</mo><mrow><mo>[</mo><msub><mi>t</mi><mi>k</mi></msub><mo>,</mo><msub><mi>t</mi><mi>k</mi></msub><mo>+</mo><mi>ε</mi><mo>]</mo></mrow></mrow></math>. In this paper, we study the quantity <dispformula><math><mrow><mtable><mtr><mtd><mrow><msub><mi>M</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><mo>=</mo><munder><mo>lim</mo><mrow><mi>ε</mi><mo>→</mo><mn>0</mn></mrow></munder><mo>max</mo><mrow><mo>{</mo><mo>|</mo><mi>S</mi><mo>|</mo><mo>:</mo><mi>S</mi><mspace></mspace><mspace></mspace><mtext>is an</mtext><mspace></mspace><mi>ε</mi><mtext>-nearly</mtext><mspace></mspace><mi>k</mi><mtext>-distance set in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mi>d</mi></msup><mo>}</mo></mrow></mrow></mtd></mtr></mtable></mrow></math></dispformula>and its relation to the classical quantity <math><mrow><msub><mi>m</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math>: the size of the largest <i>k</i>-distance set in <math><msup><mrow><mi>R</mi></mrow><mi>d</mi></msup></math>. We obtain that <math><mrow><msub><mi>M</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>m</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math> for <math><mrow><mi>k</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></mrow></math>, as well as for any fixed <i>k</i>, provided that <i>d</i> is sufficiently large. The last result answers a question, proposed by Erdős, Makai, and Pach. We also address a closely related Turán-type problem, studied by Erdős, Makai, Pach, and Spencer in the 90s: given <i>n</i> points in <math><msup><mrow><mi>R</mi></mrow><mi>d</mi></msup></math>, how many pairs of them form a distance that belongs to <math><mrow><mrow><mo>[</mo><msub><mi>t</mi><mn>1</mn></msub><mo>,</mo><msub><mi>t</mi><mn>1</mn></msub><mo>+</mo><mn>1</mn><mo>]</mo></mrow><mo>∪</mo><mo>⋯</mo><mo>∪</mo><mrow><mo>[</mo><msub><mi>t</mi><mi>k</mi></msub><mo>,</mo><msub><mi>t</mi><mi>k</mi></msub><mo>+</mo><mn>1</mn><mo>]</mo></mrow></mrow></math>, where <math><mrow><msub><mi>t</mi><mn>1</mn></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mi>t</mi><mi>k</mi></msub></mrow></math> are fixed and any two points in the set are at distance at least 1 apart? We establish the connection between this quantity and a quantity closely related to <math><mrow><msub><mi>M</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow></math>, as well as obtain an exact answer for the same ranges <i>k</i>, <i>d</i> as above.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"70 3\",\"pages\":\"455-494\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550902/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00489-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00489-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/6 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

我们说,一组点S⊂Rd是一个ε-近k距离集,如果存在1≤t1≤…≤tk,使得S中任意两个不同点之间的距离落入[t1,t1+ε]Ş…Ş[tk,tk+ε]。本文研究了Mk(d)=limε→0max{|S|:Rd中的ε-近k距离集}及其与经典量mk(d)的关系:Rd的最大k距离集的大小。我们得到Mk(d)=Mk(d),对于k=2,3,以及对于任何固定的k,只要d足够大。最后一个结果回答了一个问题,由Erdõs、Makai和Pach提出。我们还解决了一个密切相关的Turán型问题,该问题由Erdõs、Makai、Pach和Spencer在90年代研究:给定Rd中的n个点,它们中有多少对形成了属于[t1,t1+1]的距离?我们建立了这个量和一个与Mk(d-1)密切相关的量之间的联系,并获得了与上述相同范围k,d的精确答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nearly <i>k</i>-Distance Sets.

Nearly <i>k</i>-Distance Sets.

Nearly <i>k</i>-Distance Sets.

Nearly k-Distance Sets.

We say that a set of points SRd is an ε-nearly k-distance set if there exist 1t1tk, such that the distance between any two distinct points in S falls into [t1,t1+ε][tk,tk+ε]. In this paper, we study the quantity Mk(d)=limε0max{|S|:Sis anε-nearlyk-distance set inRd}and its relation to the classical quantity mk(d): the size of the largest k-distance set in Rd. We obtain that Mk(d)=mk(d) for k=2,3, as well as for any fixed k, provided that d is sufficiently large. The last result answers a question, proposed by Erdős, Makai, and Pach. We also address a closely related Turán-type problem, studied by Erdős, Makai, Pach, and Spencer in the 90s: given n points in Rd, how many pairs of them form a distance that belongs to [t1,t1+1][tk,tk+1], where t1,,tk are fixed and any two points in the set are at distance at least 1 apart? We establish the connection between this quantity and a quantity closely related to Mk(d-1), as well as obtain an exact answer for the same ranges kd as above.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信