带有gldrm软件包的半参数广义线性模型。

IF 2.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
R Journal Pub Date : 2018-07-01
Michael J Wurm, Paul J Rathouz
{"title":"带有gldrm软件包的半参数广义线性模型。","authors":"Michael J Wurm,&nbsp;Paul J Rathouz","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces a new algorithm to estimate and perform inferences on a recently proposed and developed semiparametric generalized linear model (glm). Rather than selecting a particular parametric exponential family model, such as the Poisson distribution, this semiparametric glm assumes that the response is drawn from the more general exponential tilt family. The regression coefficients and unspecified reference distribution are estimated by maximizing a semiparametric likelihood. The new algorithm incorporates several computational stability and efficiency improvements over the algorithm originally proposed. In particular, the new algorithm performs well for either small or large support for the nonparametric response distribution. The algorithm is implemented in a new R package called <b>gldrm</b>.</p>","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"10 1","pages":"288-307"},"PeriodicalIF":2.3000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414059/pdf/nihms-1011992.pdf","citationCount":"0","resultStr":"{\"title\":\"Semiparametric Generalized Linear Models with the gldrm Package.\",\"authors\":\"Michael J Wurm,&nbsp;Paul J Rathouz\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper introduces a new algorithm to estimate and perform inferences on a recently proposed and developed semiparametric generalized linear model (glm). Rather than selecting a particular parametric exponential family model, such as the Poisson distribution, this semiparametric glm assumes that the response is drawn from the more general exponential tilt family. The regression coefficients and unspecified reference distribution are estimated by maximizing a semiparametric likelihood. The new algorithm incorporates several computational stability and efficiency improvements over the algorithm originally proposed. In particular, the new algorithm performs well for either small or large support for the nonparametric response distribution. The algorithm is implemented in a new R package called <b>gldrm</b>.</p>\",\"PeriodicalId\":51285,\"journal\":{\"name\":\"R Journal\",\"volume\":\"10 1\",\"pages\":\"288-307\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414059/pdf/nihms-1011992.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"94","ListUrlMain":"","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的算法来估计和推断最近提出和发展的半参数广义线性模型(glm)。这种半参数glm不是选择特定的参数指数族模型,例如泊松分布,而是假设响应来自更一般的指数倾斜族。回归系数和未指定的参考分布是通过最大化半参数似然来估计的。与最初提出的算法相比,新算法包含了一些计算稳定性和效率的改进。特别地,新算法对于非参数响应分布的小支持或大支持都表现良好。该算法在一个名为gldrm的新R包中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Semiparametric Generalized Linear Models with the gldrm Package.

Semiparametric Generalized Linear Models with the gldrm Package.

Semiparametric Generalized Linear Models with the gldrm Package.

Semiparametric Generalized Linear Models with the gldrm Package.

This paper introduces a new algorithm to estimate and perform inferences on a recently proposed and developed semiparametric generalized linear model (glm). Rather than selecting a particular parametric exponential family model, such as the Poisson distribution, this semiparametric glm assumes that the response is drawn from the more general exponential tilt family. The regression coefficients and unspecified reference distribution are estimated by maximizing a semiparametric likelihood. The new algorithm incorporates several computational stability and efficiency improvements over the algorithm originally proposed. In particular, the new algorithm performs well for either small or large support for the nonparametric response distribution. The algorithm is implemented in a new R package called gldrm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
R Journal
R Journal COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍: The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R. The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to: - put their contribution in context, in particular discuss related R functions or packages; - explain the motivation for their contribution; - provide code examples that are reproducible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信