{"title":"FOXP转录因子的功能及其通过翻译后修饰的调节。","authors":"Congwen Gao , Honglin Zhu , Peng Gong , Chen Wu , Xingzhi Xu , Xuefei Zhu","doi":"10.1016/j.bbagrm.2023.194992","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The forkhead box subfamily P (FOXP) of transcription factors, consisting of FOXP1, </span>FOXP2, </span>FOXP3<span><span>, and FOXP4, is involved in the regulation of multisystemic functioning. Disruption of the transcriptional activity of FOXP proteins leads to neurodevelopmental disorders and immunological diseases, as well as the suppression or promotion of carcinogenesis. The transcriptional activities of FOXP proteins are directly or indirectly regulated by diverse post-translational modifications, including phosphorylation, ubiquitination, </span>SUMOylation<span><span>, acetylation, O-GlcNAcylation, and </span>methylation. Here, we discuss how post-translational modifications modulate the multiple functions of FOXP proteins and examine the implications for tumorigenesis and cancer therapy.</span></span></p></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1866 4","pages":"Article 194992"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The functions of FOXP transcription factors and their regulation by post-translational modifications\",\"authors\":\"Congwen Gao , Honglin Zhu , Peng Gong , Chen Wu , Xingzhi Xu , Xuefei Zhu\",\"doi\":\"10.1016/j.bbagrm.2023.194992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>The forkhead box subfamily P (FOXP) of transcription factors, consisting of FOXP1, </span>FOXP2, </span>FOXP3<span><span>, and FOXP4, is involved in the regulation of multisystemic functioning. Disruption of the transcriptional activity of FOXP proteins leads to neurodevelopmental disorders and immunological diseases, as well as the suppression or promotion of carcinogenesis. The transcriptional activities of FOXP proteins are directly or indirectly regulated by diverse post-translational modifications, including phosphorylation, ubiquitination, </span>SUMOylation<span><span>, acetylation, O-GlcNAcylation, and </span>methylation. Here, we discuss how post-translational modifications modulate the multiple functions of FOXP proteins and examine the implications for tumorigenesis and cancer therapy.</span></span></p></div>\",\"PeriodicalId\":55382,\"journal\":{\"name\":\"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms\",\"volume\":\"1866 4\",\"pages\":\"Article 194992\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874939923000871\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874939923000871","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The functions of FOXP transcription factors and their regulation by post-translational modifications
The forkhead box subfamily P (FOXP) of transcription factors, consisting of FOXP1, FOXP2, FOXP3, and FOXP4, is involved in the regulation of multisystemic functioning. Disruption of the transcriptional activity of FOXP proteins leads to neurodevelopmental disorders and immunological diseases, as well as the suppression or promotion of carcinogenesis. The transcriptional activities of FOXP proteins are directly or indirectly regulated by diverse post-translational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, O-GlcNAcylation, and methylation. Here, we discuss how post-translational modifications modulate the multiple functions of FOXP proteins and examine the implications for tumorigenesis and cancer therapy.
期刊介绍:
BBA Gene Regulatory Mechanisms includes reports that describe novel insights into mechanisms of transcriptional, post-transcriptional and translational gene regulation. Special emphasis is placed on papers that identify epigenetic mechanisms of gene regulation, including chromatin, modification, and remodeling. This section also encompasses mechanistic studies of regulatory proteins and protein complexes; regulatory or mechanistic aspects of RNA processing; regulation of expression by small RNAs; genomic analysis of gene expression patterns; and modeling of gene regulatory pathways. Papers describing gene promoters, enhancers, silencers or other regulatory DNA regions must incorporate significant functions studies.