Konstantinos Lazaros, Panagiotis Vlamos, Aristidis G Vrahatis
{"title":"scRNA-seq数据的细胞类型注释方法:最新综述。","authors":"Konstantinos Lazaros, Panagiotis Vlamos, Aristidis G Vrahatis","doi":"10.1142/S0219720023400024","DOIUrl":null,"url":null,"abstract":"<p><p>The evolution of single-cell technology is ongoing, continually generating massive amounts of data that reveal many mysteries surrounding intricate diseases. However, their drawbacks continue to constrain us. Among these, annotating cell types in single-cell gene expressions pose a substantial challenge, despite the myriad of tools at our disposal. The rapid growth in data, resources, and tools has consequently brought about significant alterations in this area over the years. In our study, we spotlight all note-worthy cell type annotation techniques developed over the past four years. We provide an overview of the latest trends in this field, showcasing the most advanced methods in taxonomy. Our research underscores the demand for additional tools that incorporate a biological context and also predicts that the rising trend of graph neural network approaches will likely lead this research field in the coming years.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":" ","pages":"2340002"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methods for cell-type annotation on scRNA-seq data: A recent overview.\",\"authors\":\"Konstantinos Lazaros, Panagiotis Vlamos, Aristidis G Vrahatis\",\"doi\":\"10.1142/S0219720023400024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The evolution of single-cell technology is ongoing, continually generating massive amounts of data that reveal many mysteries surrounding intricate diseases. However, their drawbacks continue to constrain us. Among these, annotating cell types in single-cell gene expressions pose a substantial challenge, despite the myriad of tools at our disposal. The rapid growth in data, resources, and tools has consequently brought about significant alterations in this area over the years. In our study, we spotlight all note-worthy cell type annotation techniques developed over the past four years. We provide an overview of the latest trends in this field, showcasing the most advanced methods in taxonomy. Our research underscores the demand for additional tools that incorporate a biological context and also predicts that the rising trend of graph neural network approaches will likely lead this research field in the coming years.</p>\",\"PeriodicalId\":48910,\"journal\":{\"name\":\"Journal of Bioinformatics and Computational Biology\",\"volume\":\" \",\"pages\":\"2340002\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219720023400024\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720023400024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Methods for cell-type annotation on scRNA-seq data: A recent overview.
The evolution of single-cell technology is ongoing, continually generating massive amounts of data that reveal many mysteries surrounding intricate diseases. However, their drawbacks continue to constrain us. Among these, annotating cell types in single-cell gene expressions pose a substantial challenge, despite the myriad of tools at our disposal. The rapid growth in data, resources, and tools has consequently brought about significant alterations in this area over the years. In our study, we spotlight all note-worthy cell type annotation techniques developed over the past four years. We provide an overview of the latest trends in this field, showcasing the most advanced methods in taxonomy. Our research underscores the demand for additional tools that incorporate a biological context and also predicts that the rising trend of graph neural network approaches will likely lead this research field in the coming years.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.