Nicholas J Spada, Sinan Yatkin, Jason Giacomo, Krystyna Trzepla, Nicole P Hyslop
{"title":"评估改进PM2.5元素测量。","authors":"Nicholas J Spada, Sinan Yatkin, Jason Giacomo, Krystyna Trzepla, Nicole P Hyslop","doi":"10.1080/10962247.2023.2262417","DOIUrl":null,"url":null,"abstract":"<p><p>The Interagency Monitoring of PROtected Visual Environments (IMPROVE) network has collected airborne particulate matter (PM) samples at locations throughout the United States since 1988 and provided chemical speciation measurements on the samples using several techniques including X-ray fluorescence (XRF). New XRF instruments for measuring PM elemental content of IMPROVE samples were introduced in 2011. To evaluate the performance of these new instruments relative to the old instruments, archived sample from three IMPROVE monitoring sites were retrieved and analyzed on the new instruments. The agreement between the two instruments varied by element. Comparisons of the results were very good (slopes within 10% of unity) for most elements regularly measured well above the detection limits (sulfur, chlorine, potassium, titanium, vanadium, manganese, iron, copper, zinc, selenium, lead). Different particle compositions at the three sites highlighted different measurement interferences. High sea salt concentrations at the coastal site emphasized corrections applied in the old systems to light elements - sodium and magnesium - and resulted in poor agreement for these elements. Comparisons of the XRF measurements with collocated sulfate measurements by ion chromatography suggest that sulfur measurements from the new instruments are more precise but slight underestimates. Comparing elemental ratios to expected ratios for soil-derived PM demonstrate the new instruments are better at resolving the aluminum and silicon peaks.<i>Implications</i>: The presented work represents a comprehensive analysis of the method change enacted within the Interagency Monitoring of PROtected Visual Environments (IMPROVE) air monitoring network. This work describes the implications of the last change in elemental quantification methodology. The most important point for data users performing longitudinal analyses is that light elements (e.g., sodium - sulfur) were affected; the old instrumentation overestimated these elements while the current measurements are slightly underestimated. The authors recommend these results to be taken into consideration when interpreting sea salt and crustal sources of atmospheric dust.</p>","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":" ","pages":"843-852"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating IMPROVE PM<sub>2.5</sub> element measurements.\",\"authors\":\"Nicholas J Spada, Sinan Yatkin, Jason Giacomo, Krystyna Trzepla, Nicole P Hyslop\",\"doi\":\"10.1080/10962247.2023.2262417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Interagency Monitoring of PROtected Visual Environments (IMPROVE) network has collected airborne particulate matter (PM) samples at locations throughout the United States since 1988 and provided chemical speciation measurements on the samples using several techniques including X-ray fluorescence (XRF). New XRF instruments for measuring PM elemental content of IMPROVE samples were introduced in 2011. To evaluate the performance of these new instruments relative to the old instruments, archived sample from three IMPROVE monitoring sites were retrieved and analyzed on the new instruments. The agreement between the two instruments varied by element. Comparisons of the results were very good (slopes within 10% of unity) for most elements regularly measured well above the detection limits (sulfur, chlorine, potassium, titanium, vanadium, manganese, iron, copper, zinc, selenium, lead). Different particle compositions at the three sites highlighted different measurement interferences. High sea salt concentrations at the coastal site emphasized corrections applied in the old systems to light elements - sodium and magnesium - and resulted in poor agreement for these elements. Comparisons of the XRF measurements with collocated sulfate measurements by ion chromatography suggest that sulfur measurements from the new instruments are more precise but slight underestimates. Comparing elemental ratios to expected ratios for soil-derived PM demonstrate the new instruments are better at resolving the aluminum and silicon peaks.<i>Implications</i>: The presented work represents a comprehensive analysis of the method change enacted within the Interagency Monitoring of PROtected Visual Environments (IMPROVE) air monitoring network. This work describes the implications of the last change in elemental quantification methodology. The most important point for data users performing longitudinal analyses is that light elements (e.g., sodium - sulfur) were affected; the old instrumentation overestimated these elements while the current measurements are slightly underestimated. The authors recommend these results to be taken into consideration when interpreting sea salt and crustal sources of atmospheric dust.</p>\",\"PeriodicalId\":49171,\"journal\":{\"name\":\"Journal of the Air & Waste Management Association\",\"volume\":\" \",\"pages\":\"843-852\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Air & Waste Management Association\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10962247.2023.2262417\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Air & Waste Management Association","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10962247.2023.2262417","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
The Interagency Monitoring of PROtected Visual Environments (IMPROVE) network has collected airborne particulate matter (PM) samples at locations throughout the United States since 1988 and provided chemical speciation measurements on the samples using several techniques including X-ray fluorescence (XRF). New XRF instruments for measuring PM elemental content of IMPROVE samples were introduced in 2011. To evaluate the performance of these new instruments relative to the old instruments, archived sample from three IMPROVE monitoring sites were retrieved and analyzed on the new instruments. The agreement between the two instruments varied by element. Comparisons of the results were very good (slopes within 10% of unity) for most elements regularly measured well above the detection limits (sulfur, chlorine, potassium, titanium, vanadium, manganese, iron, copper, zinc, selenium, lead). Different particle compositions at the three sites highlighted different measurement interferences. High sea salt concentrations at the coastal site emphasized corrections applied in the old systems to light elements - sodium and magnesium - and resulted in poor agreement for these elements. Comparisons of the XRF measurements with collocated sulfate measurements by ion chromatography suggest that sulfur measurements from the new instruments are more precise but slight underestimates. Comparing elemental ratios to expected ratios for soil-derived PM demonstrate the new instruments are better at resolving the aluminum and silicon peaks.Implications: The presented work represents a comprehensive analysis of the method change enacted within the Interagency Monitoring of PROtected Visual Environments (IMPROVE) air monitoring network. This work describes the implications of the last change in elemental quantification methodology. The most important point for data users performing longitudinal analyses is that light elements (e.g., sodium - sulfur) were affected; the old instrumentation overestimated these elements while the current measurements are slightly underestimated. The authors recommend these results to be taken into consideration when interpreting sea salt and crustal sources of atmospheric dust.
期刊介绍:
The Journal of the Air & Waste Management Association (J&AWMA) is one of the oldest continuously published, peer-reviewed, technical environmental journals in the world. First published in 1951 under the name Air Repair, J&AWMA is intended to serve those occupationally involved in air pollution control and waste management through the publication of timely and reliable information.