神经形态中央凹的利害关系:嵌入式事件摄像机的前景广阔。

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, CYBERNETICS
Biological Cybernetics Pub Date : 2023-10-01 Epub Date: 2023-09-21 DOI:10.1007/s00422-023-00974-9
Amélie Gruel, Dalia Hareb, Antoine Grimaldi, Jean Martinet, Laurent Perrinet, Bernabé Linares-Barranco, Teresa Serrano-Gotarredona
{"title":"神经形态中央凹的利害关系:嵌入式事件摄像机的前景广阔。","authors":"Amélie Gruel,&nbsp;Dalia Hareb,&nbsp;Antoine Grimaldi,&nbsp;Jean Martinet,&nbsp;Laurent Perrinet,&nbsp;Bernabé Linares-Barranco,&nbsp;Teresa Serrano-Gotarredona","doi":"10.1007/s00422-023-00974-9","DOIUrl":null,"url":null,"abstract":"<p><p>Foveation can be defined as the organic action of directing the gaze towards a visual region of interest to acquire relevant information selectively. With the recent advent of event cameras, we believe that taking advantage of this visual neuroscience mechanism would greatly improve the efficiency of event data processing. Indeed, applying foveation to event data would allow to comprehend the visual scene while significantly reducing the amount of raw data to handle. In this respect, we demonstrate the stakes of neuromorphic foveation theoretically and empirically across several computer vision tasks, namely semantic segmentation and classification. We show that foveated event data have a significantly better trade-off between quantity and quality of the information conveyed than high- or low-resolution event data. Furthermore, this compromise extends even over fragmented datasets. Our code is publicly available online at: https://github.com/amygruel/FoveationStakes_DVS .</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stakes of neuromorphic foveation: a promising future for embedded event cameras.\",\"authors\":\"Amélie Gruel,&nbsp;Dalia Hareb,&nbsp;Antoine Grimaldi,&nbsp;Jean Martinet,&nbsp;Laurent Perrinet,&nbsp;Bernabé Linares-Barranco,&nbsp;Teresa Serrano-Gotarredona\",\"doi\":\"10.1007/s00422-023-00974-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Foveation can be defined as the organic action of directing the gaze towards a visual region of interest to acquire relevant information selectively. With the recent advent of event cameras, we believe that taking advantage of this visual neuroscience mechanism would greatly improve the efficiency of event data processing. Indeed, applying foveation to event data would allow to comprehend the visual scene while significantly reducing the amount of raw data to handle. In this respect, we demonstrate the stakes of neuromorphic foveation theoretically and empirically across several computer vision tasks, namely semantic segmentation and classification. We show that foveated event data have a significantly better trade-off between quantity and quality of the information conveyed than high- or low-resolution event data. Furthermore, this compromise extends even over fragmented datasets. Our code is publicly available online at: https://github.com/amygruel/FoveationStakes_DVS .</p>\",\"PeriodicalId\":55374,\"journal\":{\"name\":\"Biological Cybernetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Cybernetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00422-023-00974-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-023-00974-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 3

摘要

Foveation可以定义为将视线指向感兴趣的视觉区域以选择性地获取相关信息的有机动作。随着事件摄像机的出现,我们相信利用这种视觉神经科学机制将大大提高事件数据处理的效率。事实上,将中心凹应用于事件数据将允许理解视觉场景,同时显著减少要处理的原始数据量。在这方面,我们从理论和经验上证明了神经形态中央凹在几个计算机视觉任务中的利害关系,即语义分割和分类。我们发现,与高分辨率或低分辨率事件数据相比,中心处理的事件数据在传递的信息的数量和质量之间有更好的权衡。此外,这种折衷甚至扩展到碎片数据集。我们的代码可在线公开获取,网址为:https://github.com/amygruel/FoveationStakes_DVS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stakes of neuromorphic foveation: a promising future for embedded event cameras.

Stakes of neuromorphic foveation: a promising future for embedded event cameras.

Foveation can be defined as the organic action of directing the gaze towards a visual region of interest to acquire relevant information selectively. With the recent advent of event cameras, we believe that taking advantage of this visual neuroscience mechanism would greatly improve the efficiency of event data processing. Indeed, applying foveation to event data would allow to comprehend the visual scene while significantly reducing the amount of raw data to handle. In this respect, we demonstrate the stakes of neuromorphic foveation theoretically and empirically across several computer vision tasks, namely semantic segmentation and classification. We show that foveated event data have a significantly better trade-off between quantity and quality of the information conveyed than high- or low-resolution event data. Furthermore, this compromise extends even over fragmented datasets. Our code is publicly available online at: https://github.com/amygruel/FoveationStakes_DVS .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Cybernetics
Biological Cybernetics 工程技术-计算机:控制论
CiteScore
3.50
自引率
5.30%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信