{"title":"荷斯坦基因组中富含纯合性区域的鉴定。","authors":"M G Smaragdov","doi":"10.18699/VJGB-23-57","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, 371 Holstein cows from six herds and 26 Holstein bulls, which were used in these herds, were genotyped by the Illumina BovineSNP50 array. For runs of homozygosity (ROH) identification, consecutive and sliding runs were performed by the detectRUNS and Plink software. The missing calls did not significantly affect the ROH data. The mean number of ROH identified by consecutive runs was 95.4 ± 2.7, and that by sliding runs was 86.0 ± 2.6 in cows, while this number for Holstein bulls was lower 58.9 ± 1.9. The length of the ROH segments varied from 1 Mb to over 16 Mb, with the largest number of ROH having a length of 1-2 Mb. Of the 29 chromosomes, BTA 14, BTA 16, and BTA 7 were the most covered by ROH. The mean coefficient of inbreeding across the herds was 0.111 ± 0.003 and 0.104 ± 0.004 based on consecutive and sliding runs, respectively, and 0.078 ± 0.005 for bulls based on consecutive runs. These values do not exceed those for Holstein cattle in North America. The results of this study confirmed the more accurate identification of ROH by consecutive runs, and also that the number of allowed heterozygous SNPs may have a significant effect on ROH data.</p>","PeriodicalId":44339,"journal":{"name":"Vavilovskii Zhurnal Genetiki i Selektsii","volume":"27 5","pages":"471-479"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10556852/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of homozygosity-rich regions in the Holstein genome.\",\"authors\":\"M G Smaragdov\",\"doi\":\"10.18699/VJGB-23-57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, 371 Holstein cows from six herds and 26 Holstein bulls, which were used in these herds, were genotyped by the Illumina BovineSNP50 array. For runs of homozygosity (ROH) identification, consecutive and sliding runs were performed by the detectRUNS and Plink software. The missing calls did not significantly affect the ROH data. The mean number of ROH identified by consecutive runs was 95.4 ± 2.7, and that by sliding runs was 86.0 ± 2.6 in cows, while this number for Holstein bulls was lower 58.9 ± 1.9. The length of the ROH segments varied from 1 Mb to over 16 Mb, with the largest number of ROH having a length of 1-2 Mb. Of the 29 chromosomes, BTA 14, BTA 16, and BTA 7 were the most covered by ROH. The mean coefficient of inbreeding across the herds was 0.111 ± 0.003 and 0.104 ± 0.004 based on consecutive and sliding runs, respectively, and 0.078 ± 0.005 for bulls based on consecutive runs. These values do not exceed those for Holstein cattle in North America. The results of this study confirmed the more accurate identification of ROH by consecutive runs, and also that the number of allowed heterozygous SNPs may have a significant effect on ROH data.</p>\",\"PeriodicalId\":44339,\"journal\":{\"name\":\"Vavilovskii Zhurnal Genetiki i Selektsii\",\"volume\":\"27 5\",\"pages\":\"471-479\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10556852/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vavilovskii Zhurnal Genetiki i Selektsii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18699/VJGB-23-57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vavilovskii Zhurnal Genetiki i Selektsii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18699/VJGB-23-57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Identification of homozygosity-rich regions in the Holstein genome.
In this study, 371 Holstein cows from six herds and 26 Holstein bulls, which were used in these herds, were genotyped by the Illumina BovineSNP50 array. For runs of homozygosity (ROH) identification, consecutive and sliding runs were performed by the detectRUNS and Plink software. The missing calls did not significantly affect the ROH data. The mean number of ROH identified by consecutive runs was 95.4 ± 2.7, and that by sliding runs was 86.0 ± 2.6 in cows, while this number for Holstein bulls was lower 58.9 ± 1.9. The length of the ROH segments varied from 1 Mb to over 16 Mb, with the largest number of ROH having a length of 1-2 Mb. Of the 29 chromosomes, BTA 14, BTA 16, and BTA 7 were the most covered by ROH. The mean coefficient of inbreeding across the herds was 0.111 ± 0.003 and 0.104 ± 0.004 based on consecutive and sliding runs, respectively, and 0.078 ± 0.005 for bulls based on consecutive runs. These values do not exceed those for Holstein cattle in North America. The results of this study confirmed the more accurate identification of ROH by consecutive runs, and also that the number of allowed heterozygous SNPs may have a significant effect on ROH data.
期刊介绍:
The "Vavilov Journal of genetics and breeding" publishes original research and review articles in all key areas of modern plant, animal and human genetics, genomics, bioinformatics and biotechnology. One of the main objectives of the journal is integration of theoretical and applied research in the field of genetics. Special attention is paid to the most topical areas in modern genetics dealing with global concerns such as food security and human health.