{"title":"印度心肌病人群中新的MYBPC3突变。","authors":"Deepa Selvi Rani, Apoorva Kasala, Perundurai S Dhandapany, Uthiralingam Muthusami, Sreejith Kunnoth, Andiappan Rathinavel, Dharma Rakshak Ayapati, Kumarasamy Thangaraj","doi":"10.2147/PGPM.S407179","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mutations in Myosin Binding Protein C (<i>MYBPC3</i>) are one of the most frequent causes of cardiomyopathies in the world, but not much data are available in India.</p><p><strong>Methods: </strong>We carried out targeted direct sequencing of <i>MYBPC3 </i>in 115 hypertrophic (HCM) and 127 dilated (DCM) cardiomyopathies against 197 ethnically matched healthy controls from India.</p><p><strong>Results: </strong>We detected 34 single nucleotide variations in <i>MYBPC3</i>, of which 19 were novel. We found a splice site mutation [(IVS6+2T) T>G] and 16 missense mutations in Indian cardiomyopathies [5 in HCM; E258K, T262S, H287L, R408M, V483A: 4 in DCM; T146N, V321L, A392T, E393K and 7 in both HCM and DCM; L104M, V158M, S236G, R272C, T290A, G522E, A626V], but those were absent in 197 normal healthy controls. Interestingly, we found 7 out of 16 missense mutations (V158M, E258K, R272C, A392T, V483A, G522E, and A626V) in <i>MYBPC3</i> were altering the evolutionarily conserved native amino acids, accounted for 8.7% and 6.3% in HCM and DCM, respectively. The bioinformatic tools predicted that those 7 missense mutations were pathogenic. Moreover, the co-segregation of those 7 mutations in families further confirmed their pathogenicity. Remarkably, we also identified compound mutations within the <i>MYBPC3</i> gene of 6 cardiomyopathy patients (5%) with more severe disease phenotype; of which, 3 were HCM (2.6%) [(1. K244K + E258K + (IVS6+2T) T>G); (2. L104M + G522E + A626V); (3. P186P + G522E + A626V]; and 3 were DCM (2.4%) [(1. 5'UTR + A392T; 2. V158M+G522E; and 3.V158M + T262T + A626V].</p><p><strong>Conclusion: </strong>The present comprehensive study on <i>MYBPC3</i> has revealed both single and compound mutations in <i>MYBPC3</i> and their association with disease in Indian Population with Cardiomyopathies. Our findings may perhaps help in initiating diagnostic strategies and eventually recognizing the targets for therapeutic interventions.</p>","PeriodicalId":56015,"journal":{"name":"Pharmacogenomics & Personalized Medicine","volume":"16 ","pages":"883-893"},"PeriodicalIF":1.8000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c0/7a/pgpm-16-883.PMC10518145.pdf","citationCount":"0","resultStr":"{\"title\":\"Novel <i>MYBPC3</i> Mutations in Indian Population with Cardiomyopathies.\",\"authors\":\"Deepa Selvi Rani, Apoorva Kasala, Perundurai S Dhandapany, Uthiralingam Muthusami, Sreejith Kunnoth, Andiappan Rathinavel, Dharma Rakshak Ayapati, Kumarasamy Thangaraj\",\"doi\":\"10.2147/PGPM.S407179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Mutations in Myosin Binding Protein C (<i>MYBPC3</i>) are one of the most frequent causes of cardiomyopathies in the world, but not much data are available in India.</p><p><strong>Methods: </strong>We carried out targeted direct sequencing of <i>MYBPC3 </i>in 115 hypertrophic (HCM) and 127 dilated (DCM) cardiomyopathies against 197 ethnically matched healthy controls from India.</p><p><strong>Results: </strong>We detected 34 single nucleotide variations in <i>MYBPC3</i>, of which 19 were novel. We found a splice site mutation [(IVS6+2T) T>G] and 16 missense mutations in Indian cardiomyopathies [5 in HCM; E258K, T262S, H287L, R408M, V483A: 4 in DCM; T146N, V321L, A392T, E393K and 7 in both HCM and DCM; L104M, V158M, S236G, R272C, T290A, G522E, A626V], but those were absent in 197 normal healthy controls. Interestingly, we found 7 out of 16 missense mutations (V158M, E258K, R272C, A392T, V483A, G522E, and A626V) in <i>MYBPC3</i> were altering the evolutionarily conserved native amino acids, accounted for 8.7% and 6.3% in HCM and DCM, respectively. The bioinformatic tools predicted that those 7 missense mutations were pathogenic. Moreover, the co-segregation of those 7 mutations in families further confirmed their pathogenicity. Remarkably, we also identified compound mutations within the <i>MYBPC3</i> gene of 6 cardiomyopathy patients (5%) with more severe disease phenotype; of which, 3 were HCM (2.6%) [(1. K244K + E258K + (IVS6+2T) T>G); (2. L104M + G522E + A626V); (3. P186P + G522E + A626V]; and 3 were DCM (2.4%) [(1. 5'UTR + A392T; 2. V158M+G522E; and 3.V158M + T262T + A626V].</p><p><strong>Conclusion: </strong>The present comprehensive study on <i>MYBPC3</i> has revealed both single and compound mutations in <i>MYBPC3</i> and their association with disease in Indian Population with Cardiomyopathies. Our findings may perhaps help in initiating diagnostic strategies and eventually recognizing the targets for therapeutic interventions.</p>\",\"PeriodicalId\":56015,\"journal\":{\"name\":\"Pharmacogenomics & Personalized Medicine\",\"volume\":\"16 \",\"pages\":\"883-893\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c0/7a/pgpm-16-883.PMC10518145.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacogenomics & Personalized Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/PGPM.S407179\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenomics & Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/PGPM.S407179","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Novel MYBPC3 Mutations in Indian Population with Cardiomyopathies.
Background: Mutations in Myosin Binding Protein C (MYBPC3) are one of the most frequent causes of cardiomyopathies in the world, but not much data are available in India.
Methods: We carried out targeted direct sequencing of MYBPC3 in 115 hypertrophic (HCM) and 127 dilated (DCM) cardiomyopathies against 197 ethnically matched healthy controls from India.
Results: We detected 34 single nucleotide variations in MYBPC3, of which 19 were novel. We found a splice site mutation [(IVS6+2T) T>G] and 16 missense mutations in Indian cardiomyopathies [5 in HCM; E258K, T262S, H287L, R408M, V483A: 4 in DCM; T146N, V321L, A392T, E393K and 7 in both HCM and DCM; L104M, V158M, S236G, R272C, T290A, G522E, A626V], but those were absent in 197 normal healthy controls. Interestingly, we found 7 out of 16 missense mutations (V158M, E258K, R272C, A392T, V483A, G522E, and A626V) in MYBPC3 were altering the evolutionarily conserved native amino acids, accounted for 8.7% and 6.3% in HCM and DCM, respectively. The bioinformatic tools predicted that those 7 missense mutations were pathogenic. Moreover, the co-segregation of those 7 mutations in families further confirmed their pathogenicity. Remarkably, we also identified compound mutations within the MYBPC3 gene of 6 cardiomyopathy patients (5%) with more severe disease phenotype; of which, 3 were HCM (2.6%) [(1. K244K + E258K + (IVS6+2T) T>G); (2. L104M + G522E + A626V); (3. P186P + G522E + A626V]; and 3 were DCM (2.4%) [(1. 5'UTR + A392T; 2. V158M+G522E; and 3.V158M + T262T + A626V].
Conclusion: The present comprehensive study on MYBPC3 has revealed both single and compound mutations in MYBPC3 and their association with disease in Indian Population with Cardiomyopathies. Our findings may perhaps help in initiating diagnostic strategies and eventually recognizing the targets for therapeutic interventions.
期刊介绍:
Pharmacogenomics and Personalized Medicine is an international, peer-reviewed, open-access journal characterizing the influence of genotype on pharmacology leading to the development of personalized treatment programs and individualized drug selection for improved safety, efficacy and sustainability.
In particular, emphasis will be given to:
Genomic and proteomic profiling
Genetics and drug metabolism
Targeted drug identification and discovery
Optimizing drug selection & dosage based on patient''s genetic profile
Drug related morbidity & mortality intervention
Advanced disease screening and targeted therapeutic intervention
Genetic based vaccine development
Patient satisfaction and preference
Health economic evaluations
Practical and organizational issues in the development and implementation of personalized medicine programs.