Chen Zhang, Kankan Cao, Moran Yang, Yiying Wang, Mengdi He, Jiaqi Lu, Yan Huang, Guodong Zhang, Haiou Liu
{"title":"C5aR1阻断重塑免疫抑制肿瘤微环境,并与免疫检查点阻断疗法协同治疗高级别浆液性卵巢癌症。","authors":"Chen Zhang, Kankan Cao, Moran Yang, Yiying Wang, Mengdi He, Jiaqi Lu, Yan Huang, Guodong Zhang, Haiou Liu","doi":"10.1080/2162402X.2023.2261242","DOIUrl":null,"url":null,"abstract":"<p><p>High-grade serous ovarian cancer (HGSC), with a modest response to immune checkpoint blockade (ICB) targeting PD-1/PD-L1 monotherapy, is densely infiltrated by M2-polarized tumor-associated macrophages (TAMs) and regulatory T (Treg) cells. The complement C5a/C5aR1 axis contributes to the programming of the immunosuppressive phenotype of TAMs in solid tumors and represents a promising immunomodulatory target for treating HGSCs. Here, we aimed to identify the relevance of C5aR1 in prognosis, immune microenvironment, and immunotherapy response in HGSCs. The expression and relationship of C5aR1 with tumor-infiltrating immune cells were assessed by immunohistochemistry and flow cytometry in the training cohort (<i>n</i> = 120) and fresh HGSC tissues (<i>n</i> = 36). Transcriptomic analyses of the xenografts delineated the mechanisms driving the immunomodulatory activity of PMX53, an orally bioavailable C5aR1 inhibitor. Therapeutic relevance was confirmed in ex vivo tumor cultures and The Cancer Genome Atlas (TCGA) datasets. C5aR1 expression independently predicted dismal prognosis and was linked to the immunoevasive subtype of HGSC, characterized by increased infiltration of pro-tumor cells (Treg cells, M2-polarized macrophages, and neutrophils) and impaired CD8<sup>+</sup>T functions. PMX53 antagonized subcutaneous tumor growth, modulated immunosuppressive mechanisms and synergized with aPD-1 in several tumor types. Single-cell RNA-seq analysis revealed predominant C5aR1 expression in TAMs, with an immunosuppressive-related expression signature in C5aR1<sup>+</sup>TAMs. Furthermore, the combination of C5aR1 and PD-L1 was associated with specific molecular characteristics and matched clinical response annotations. Therefore, the abundance of C5aR1 could predict an inferior prognosis in HGSCs, and incorporating PD-L1 may serve as a novel predictive biomarker to guide therapeutic options.</p>","PeriodicalId":19683,"journal":{"name":"Oncoimmunology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/72/97/KONI_12_2261242.PMC10543342.pdf","citationCount":"0","resultStr":"{\"title\":\"C5aR1 blockade reshapes immunosuppressive tumor microenvironment and synergizes with immune checkpoint blockade therapy in high-grade serous ovarian cancer.\",\"authors\":\"Chen Zhang, Kankan Cao, Moran Yang, Yiying Wang, Mengdi He, Jiaqi Lu, Yan Huang, Guodong Zhang, Haiou Liu\",\"doi\":\"10.1080/2162402X.2023.2261242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-grade serous ovarian cancer (HGSC), with a modest response to immune checkpoint blockade (ICB) targeting PD-1/PD-L1 monotherapy, is densely infiltrated by M2-polarized tumor-associated macrophages (TAMs) and regulatory T (Treg) cells. The complement C5a/C5aR1 axis contributes to the programming of the immunosuppressive phenotype of TAMs in solid tumors and represents a promising immunomodulatory target for treating HGSCs. Here, we aimed to identify the relevance of C5aR1 in prognosis, immune microenvironment, and immunotherapy response in HGSCs. The expression and relationship of C5aR1 with tumor-infiltrating immune cells were assessed by immunohistochemistry and flow cytometry in the training cohort (<i>n</i> = 120) and fresh HGSC tissues (<i>n</i> = 36). Transcriptomic analyses of the xenografts delineated the mechanisms driving the immunomodulatory activity of PMX53, an orally bioavailable C5aR1 inhibitor. Therapeutic relevance was confirmed in ex vivo tumor cultures and The Cancer Genome Atlas (TCGA) datasets. C5aR1 expression independently predicted dismal prognosis and was linked to the immunoevasive subtype of HGSC, characterized by increased infiltration of pro-tumor cells (Treg cells, M2-polarized macrophages, and neutrophils) and impaired CD8<sup>+</sup>T functions. PMX53 antagonized subcutaneous tumor growth, modulated immunosuppressive mechanisms and synergized with aPD-1 in several tumor types. Single-cell RNA-seq analysis revealed predominant C5aR1 expression in TAMs, with an immunosuppressive-related expression signature in C5aR1<sup>+</sup>TAMs. Furthermore, the combination of C5aR1 and PD-L1 was associated with specific molecular characteristics and matched clinical response annotations. Therefore, the abundance of C5aR1 could predict an inferior prognosis in HGSCs, and incorporating PD-L1 may serve as a novel predictive biomarker to guide therapeutic options.</p>\",\"PeriodicalId\":19683,\"journal\":{\"name\":\"Oncoimmunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/72/97/KONI_12_2261242.PMC10543342.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncoimmunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/2162402X.2023.2261242\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncoimmunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/2162402X.2023.2261242","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
C5aR1 blockade reshapes immunosuppressive tumor microenvironment and synergizes with immune checkpoint blockade therapy in high-grade serous ovarian cancer.
High-grade serous ovarian cancer (HGSC), with a modest response to immune checkpoint blockade (ICB) targeting PD-1/PD-L1 monotherapy, is densely infiltrated by M2-polarized tumor-associated macrophages (TAMs) and regulatory T (Treg) cells. The complement C5a/C5aR1 axis contributes to the programming of the immunosuppressive phenotype of TAMs in solid tumors and represents a promising immunomodulatory target for treating HGSCs. Here, we aimed to identify the relevance of C5aR1 in prognosis, immune microenvironment, and immunotherapy response in HGSCs. The expression and relationship of C5aR1 with tumor-infiltrating immune cells were assessed by immunohistochemistry and flow cytometry in the training cohort (n = 120) and fresh HGSC tissues (n = 36). Transcriptomic analyses of the xenografts delineated the mechanisms driving the immunomodulatory activity of PMX53, an orally bioavailable C5aR1 inhibitor. Therapeutic relevance was confirmed in ex vivo tumor cultures and The Cancer Genome Atlas (TCGA) datasets. C5aR1 expression independently predicted dismal prognosis and was linked to the immunoevasive subtype of HGSC, characterized by increased infiltration of pro-tumor cells (Treg cells, M2-polarized macrophages, and neutrophils) and impaired CD8+T functions. PMX53 antagonized subcutaneous tumor growth, modulated immunosuppressive mechanisms and synergized with aPD-1 in several tumor types. Single-cell RNA-seq analysis revealed predominant C5aR1 expression in TAMs, with an immunosuppressive-related expression signature in C5aR1+TAMs. Furthermore, the combination of C5aR1 and PD-L1 was associated with specific molecular characteristics and matched clinical response annotations. Therefore, the abundance of C5aR1 could predict an inferior prognosis in HGSCs, and incorporating PD-L1 may serve as a novel predictive biomarker to guide therapeutic options.
期刊介绍:
Tumor immunology explores the natural and therapy-induced recognition of cancers, along with the complex interplay between oncogenesis, inflammation, and immunosurveillance. In response to recent advancements, a new journal, OncoImmunology, is being launched to specifically address tumor immunology. The field has seen significant progress with the clinical demonstration and FDA approval of anticancer immunotherapies. There's also growing evidence suggesting that many current chemotherapeutic agents rely on immune effectors for their efficacy.
While oncologists have historically utilized chemotherapeutic and radiotherapeutic regimens successfully, they may have unwittingly leveraged the immune system's ability to recognize tumor-specific antigens and control cancer growth. Consequently, immunological biomarkers are increasingly crucial for cancer prognosis and predicting chemotherapy efficacy. There's strong support for combining conventional anticancer therapies with immunotherapies. OncoImmunology will welcome high-profile submissions spanning fundamental, translational, and clinical aspects of tumor immunology, including solid and hematological cancers, inflammation, and both innate and acquired immune responses.