分化结直肠癌癌症干细胞的网络引导治疗。

Saptarshi Sinha, Joshua Alcantara, Kevin Perry, Vanessa Castillo, Annelies Ondersma, Satarupa Banerjee, Ella McLaren, Celia R Espinoza, Sahar Taheri, Eleadah Vidales, Courtney Tindle, Adel Adel, Siamak Amirfakhri, Joseph R Sawires, Jerry Yang, Michael Bouvet, Pradipta Ghosh
{"title":"分化结直肠癌癌症干细胞的网络引导治疗。","authors":"Saptarshi Sinha, Joshua Alcantara, Kevin Perry, Vanessa Castillo, Annelies Ondersma, Satarupa Banerjee, Ella McLaren, Celia R Espinoza, Sahar Taheri, Eleadah Vidales, Courtney Tindle, Adel Adel, Siamak Amirfakhri, Joseph R Sawires, Jerry Yang, Michael Bouvet, Pradipta Ghosh","doi":"10.1101/2023.09.13.557628","DOIUrl":null,"url":null,"abstract":"<p><p>Despite advances in artificial intelligence (AI) within cancer research, its application toward realizing differentiation therapy in solid tumors remains limited. Using colorectal cancer (CRC) as a model, we developed a machine learning (ML) framework, <b><i>CANDiT</i></b> ( <i>Cancer Associated Nodes for Differentiation Targeting</i> ), to selectively induce differentiation and death of cancer stem cells (CSCs)-a key obstacle to durable response. Centering on one node, <i>CDX2</i> , a master differentiation factor lost in high-risk, poorly differentiated CRCs, we built a transcriptomic network to identify therapeutic strategies for CDX2 restoration. Network-based prioritization identified <i>PRKAB1</i> , a stress polarity sensor, as a top target. A clinical-grade PRKAB1 agonist reprogrammed transcriptional networks, induced crypt differentiation, and selectively eliminated CDX2-low CSCs in CRC cell lines, xenografts and patient-derived organoids (PDOs). Multivariate analyses in PDOs revealed a strong therapeutic index, linking efficacy (IC₅₀) to the biomarker-defined CDX2-low state. A 50-gene response signature-derived from an integrated analyses of all three models and trained across multiple datasets-revealed that CDX2 restoration therapy may translate into a ∼50% reduction in recurrence and mortality risk. Mechanistically, treatment activated a differentiation-associated stress polarity signaling axis while dismantling Wnt and YAP-driven stemness programs essential to CSC survival. Thus, <i>CANDiT</i> offers a scalable path to CSC-directed therapy in solid tumors by translating transcriptomic vulnerabilities into precision treatments.</p><p><strong>Graphic abstract: </strong></p><p><strong>One sentence summary: </strong>In this work, Sinha et al. introduce a machine learning-guided framework to identify and target transcriptomic vulnerabilities in colorectal cancer, demonstrating that differentiation therapy selectively eliminates cancer stem cells and reduces recurrence risk.</p><p><strong>Highlights: </strong>An ML framework ( <i>CANDiT</i> ) identifies target for differentiation therapy for CRCs Therapy induces crypt differentiation and CSC-specific cytotoxicityCDX2-low state predicts therapeutic response; restoration improves prognosisTherapy dismantles stemness via reactivation of stress polarity signaling.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515918/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Guided Differentiation Therapy Targets Cancer Stem Cells in Colorectal Cancers.\",\"authors\":\"Saptarshi Sinha, Joshua Alcantara, Kevin Perry, Vanessa Castillo, Annelies Ondersma, Satarupa Banerjee, Ella McLaren, Celia R Espinoza, Sahar Taheri, Eleadah Vidales, Courtney Tindle, Adel Adel, Siamak Amirfakhri, Joseph R Sawires, Jerry Yang, Michael Bouvet, Pradipta Ghosh\",\"doi\":\"10.1101/2023.09.13.557628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite advances in artificial intelligence (AI) within cancer research, its application toward realizing differentiation therapy in solid tumors remains limited. Using colorectal cancer (CRC) as a model, we developed a machine learning (ML) framework, <b><i>CANDiT</i></b> ( <i>Cancer Associated Nodes for Differentiation Targeting</i> ), to selectively induce differentiation and death of cancer stem cells (CSCs)-a key obstacle to durable response. Centering on one node, <i>CDX2</i> , a master differentiation factor lost in high-risk, poorly differentiated CRCs, we built a transcriptomic network to identify therapeutic strategies for CDX2 restoration. Network-based prioritization identified <i>PRKAB1</i> , a stress polarity sensor, as a top target. A clinical-grade PRKAB1 agonist reprogrammed transcriptional networks, induced crypt differentiation, and selectively eliminated CDX2-low CSCs in CRC cell lines, xenografts and patient-derived organoids (PDOs). Multivariate analyses in PDOs revealed a strong therapeutic index, linking efficacy (IC₅₀) to the biomarker-defined CDX2-low state. A 50-gene response signature-derived from an integrated analyses of all three models and trained across multiple datasets-revealed that CDX2 restoration therapy may translate into a ∼50% reduction in recurrence and mortality risk. Mechanistically, treatment activated a differentiation-associated stress polarity signaling axis while dismantling Wnt and YAP-driven stemness programs essential to CSC survival. Thus, <i>CANDiT</i> offers a scalable path to CSC-directed therapy in solid tumors by translating transcriptomic vulnerabilities into precision treatments.</p><p><strong>Graphic abstract: </strong></p><p><strong>One sentence summary: </strong>In this work, Sinha et al. introduce a machine learning-guided framework to identify and target transcriptomic vulnerabilities in colorectal cancer, demonstrating that differentiation therapy selectively eliminates cancer stem cells and reduces recurrence risk.</p><p><strong>Highlights: </strong>An ML framework ( <i>CANDiT</i> ) identifies target for differentiation therapy for CRCs Therapy induces crypt differentiation and CSC-specific cytotoxicityCDX2-low state predicts therapeutic response; restoration improves prognosisTherapy dismantles stemness via reactivation of stress polarity signaling.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515918/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.09.13.557628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.09.13.557628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分化疗法的治疗潜力在血液系统恶性肿瘤中得到了认可,但在实体瘤中却没有。以结直肠癌(CRC)为例,我们概述了一种无偏的基于网络的方法来追踪、分化和选择性靶向癌症干细胞(CSC)。建立转录组学网络的目的是识别可以恢复CDX2表达的治疗扰动,CDX2是一种转录因子,其缺失可识别低分化(CSC富集)CRC,其恢复可将死亡/复发风险降低50%。当与临床级药物接触时,首选靶点可预测地改变网络,诱导CDX2和隐窝分化,并对CDX2阴性模型(CRC细胞系、小鼠异种移植和患者衍生的类器官;PDO)表现出令人惊讶的选择性细胞毒性。使用多变量分析在PDO中证实了疗效(IC50)和生物标志物(CDX2低状态)有效配对的潜力。治疗反应的50个基因特征表明,CDX2恢复治疗有望将死亡率/复发风险降低约50%。我们得出的结论是,CDX2的恢复选择性地触发结直肠癌干细胞的分化和死亡,通过这样做,这种网络引导的方法在实体瘤中确定了一流的分化治疗剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning-Guided Differentiation Therapy Targets Cancer Stem Cells in Colorectal Cancers.

Despite advances in artificial intelligence (AI) within cancer research, its application toward realizing differentiation therapy in solid tumors remains limited. Using colorectal cancer (CRC) as a model, we developed a machine learning (ML) framework, CANDiT ( Cancer Associated Nodes for Differentiation Targeting ), to selectively induce differentiation and death of cancer stem cells (CSCs)-a key obstacle to durable response. Centering on one node, CDX2 , a master differentiation factor lost in high-risk, poorly differentiated CRCs, we built a transcriptomic network to identify therapeutic strategies for CDX2 restoration. Network-based prioritization identified PRKAB1 , a stress polarity sensor, as a top target. A clinical-grade PRKAB1 agonist reprogrammed transcriptional networks, induced crypt differentiation, and selectively eliminated CDX2-low CSCs in CRC cell lines, xenografts and patient-derived organoids (PDOs). Multivariate analyses in PDOs revealed a strong therapeutic index, linking efficacy (IC₅₀) to the biomarker-defined CDX2-low state. A 50-gene response signature-derived from an integrated analyses of all three models and trained across multiple datasets-revealed that CDX2 restoration therapy may translate into a ∼50% reduction in recurrence and mortality risk. Mechanistically, treatment activated a differentiation-associated stress polarity signaling axis while dismantling Wnt and YAP-driven stemness programs essential to CSC survival. Thus, CANDiT offers a scalable path to CSC-directed therapy in solid tumors by translating transcriptomic vulnerabilities into precision treatments.

Graphic abstract:

One sentence summary: In this work, Sinha et al. introduce a machine learning-guided framework to identify and target transcriptomic vulnerabilities in colorectal cancer, demonstrating that differentiation therapy selectively eliminates cancer stem cells and reduces recurrence risk.

Highlights: An ML framework ( CANDiT ) identifies target for differentiation therapy for CRCs Therapy induces crypt differentiation and CSC-specific cytotoxicityCDX2-low state predicts therapeutic response; restoration improves prognosisTherapy dismantles stemness via reactivation of stress polarity signaling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信