环境表观基因组。

IF 2.5 Q3 GENETICS & HEREDITY
Bambarendage P U Perera, Frédéric Silvestre
{"title":"环境表观基因组。","authors":"Bambarendage P U Perera, Frédéric Silvestre","doi":"10.3390/epigenomes7030021","DOIUrl":null,"url":null,"abstract":"Research in epigenetics has dramatically risen during the last decade to include aspects of environmental biology. However, many questions remain regarding the effects of environmental stressors on the epigenome, incorporating the particular role of epigenetic mechanisms in the adaptation and evolution of organisms in changing environments. Epigenetics is commonly defined as mitotically and/or meiotically heritable changes in gene function that occur without altering the underlying DNA sequence. It encompasses DNA (hydroxy)methylation, histone modifications, chromatin structure, and non-coding RNAs that may be inherited across generations under certain circumstances. Epigenetic mechanisms are perfect candidates to extend our understanding of the impact of environmental stressors on organisms and to explain the rapid phenomenon of adaptive evolution. Existing evidence shows that environmental cues can affect the epigenome and modify gene expression accordingly. These changes can then induce phenotypic modifications that are morphological, physiological, or behavioral at the organismal level. In this Special Issue focusing on environmental epigenetics, we provide an overview of influences to the epigenome that are driven by various environmental and evolutionary factors, with a particular focus on DNA methylation (DNAm). Five research groups have contributed insightful studies or reviews on (1) DNAm and demethylation events affected by the exposome; (2) DNAm as a potential biomarker to determine cardiometabolic risk early in life; (3) consequences of DNAm across multiple generations; (4) DNAm variation within natural animal populations; and (5) epigenetic mechanisms in genetically uniform organisms. Collectively, the articles from this Special Issue consistently support that environmental changes can induce long-lasting epigenetic effects within a given organism pertaining to individual risk for disease, or multi-generational impacts that ultimately impact evolution.","PeriodicalId":55768,"journal":{"name":"Epigenomes","volume":"7 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10527617/pdf/","citationCount":"0","resultStr":"{\"title\":\"Environmental Epigenomes.\",\"authors\":\"Bambarendage P U Perera, Frédéric Silvestre\",\"doi\":\"10.3390/epigenomes7030021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research in epigenetics has dramatically risen during the last decade to include aspects of environmental biology. However, many questions remain regarding the effects of environmental stressors on the epigenome, incorporating the particular role of epigenetic mechanisms in the adaptation and evolution of organisms in changing environments. Epigenetics is commonly defined as mitotically and/or meiotically heritable changes in gene function that occur without altering the underlying DNA sequence. It encompasses DNA (hydroxy)methylation, histone modifications, chromatin structure, and non-coding RNAs that may be inherited across generations under certain circumstances. Epigenetic mechanisms are perfect candidates to extend our understanding of the impact of environmental stressors on organisms and to explain the rapid phenomenon of adaptive evolution. Existing evidence shows that environmental cues can affect the epigenome and modify gene expression accordingly. These changes can then induce phenotypic modifications that are morphological, physiological, or behavioral at the organismal level. In this Special Issue focusing on environmental epigenetics, we provide an overview of influences to the epigenome that are driven by various environmental and evolutionary factors, with a particular focus on DNA methylation (DNAm). Five research groups have contributed insightful studies or reviews on (1) DNAm and demethylation events affected by the exposome; (2) DNAm as a potential biomarker to determine cardiometabolic risk early in life; (3) consequences of DNAm across multiple generations; (4) DNAm variation within natural animal populations; and (5) epigenetic mechanisms in genetically uniform organisms. Collectively, the articles from this Special Issue consistently support that environmental changes can induce long-lasting epigenetic effects within a given organism pertaining to individual risk for disease, or multi-generational impacts that ultimately impact evolution.\",\"PeriodicalId\":55768,\"journal\":{\"name\":\"Epigenomes\",\"volume\":\"7 3\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10527617/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenomes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/epigenomes7030021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/epigenomes7030021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年里,表观遗传学的研究急剧增加,包括环境生物学的各个方面。然而,关于环境应激源对表观基因组的影响,包括表观遗传学机制在生物体在不断变化的环境中的适应和进化中的特殊作用,仍然存在许多问题。表观遗传学通常被定义为在不改变潜在DNA序列的情况下发生的基因功能的有丝分裂和/或减数分裂遗传变化。它包括DNA(羟基)甲基化、组蛋白修饰、染色质结构和在某些情况下可能跨代遗传的非编码RNA。表观遗传学机制是扩展我们对环境压力源对生物体影响的理解和解释适应性进化的快速现象的完美候选者。现有证据表明,环境线索可以影响表观基因组并相应地改变基因表达。然后,这些变化可以在生物体水平上诱导形态学、生理学或行为学的表型修饰。在这期关注环境表观遗传学的特刊中,我们概述了各种环境和进化因素对表观基因组的影响,特别关注DNA甲基化(DNAm)。五个研究小组对以下方面做出了有见地的研究或评论:(1)受暴露体影响的DNAm和去甲基化事件;(2) DNAm作为确定生命早期心脏代谢风险的潜在生物标志物;(3) DNAm跨多代的后果;(4) 自然动物种群中的DNAm变异;和(5)遗传一致的生物体中的表观遗传学机制。总的来说,本期特刊的文章一致支持,环境变化可以在特定生物体内引发与个体疾病风险有关的长期表观遗传效应,或最终影响进化的多代影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Environmental Epigenomes.
Research in epigenetics has dramatically risen during the last decade to include aspects of environmental biology. However, many questions remain regarding the effects of environmental stressors on the epigenome, incorporating the particular role of epigenetic mechanisms in the adaptation and evolution of organisms in changing environments. Epigenetics is commonly defined as mitotically and/or meiotically heritable changes in gene function that occur without altering the underlying DNA sequence. It encompasses DNA (hydroxy)methylation, histone modifications, chromatin structure, and non-coding RNAs that may be inherited across generations under certain circumstances. Epigenetic mechanisms are perfect candidates to extend our understanding of the impact of environmental stressors on organisms and to explain the rapid phenomenon of adaptive evolution. Existing evidence shows that environmental cues can affect the epigenome and modify gene expression accordingly. These changes can then induce phenotypic modifications that are morphological, physiological, or behavioral at the organismal level. In this Special Issue focusing on environmental epigenetics, we provide an overview of influences to the epigenome that are driven by various environmental and evolutionary factors, with a particular focus on DNA methylation (DNAm). Five research groups have contributed insightful studies or reviews on (1) DNAm and demethylation events affected by the exposome; (2) DNAm as a potential biomarker to determine cardiometabolic risk early in life; (3) consequences of DNAm across multiple generations; (4) DNAm variation within natural animal populations; and (5) epigenetic mechanisms in genetically uniform organisms. Collectively, the articles from this Special Issue consistently support that environmental changes can induce long-lasting epigenetic effects within a given organism pertaining to individual risk for disease, or multi-generational impacts that ultimately impact evolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epigenomes
Epigenomes GENETICS & HEREDITY-
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信