Vikram V Dwarkadas, Nicolas Dauphas, Bradley Meyer, Peter Boyajian, Michael Bojazi
{"title":"太阳系起源于Wolf Rayet气泡外壳内的触发恒星形成。","authors":"Vikram V Dwarkadas, Nicolas Dauphas, Bradley Meyer, Peter Boyajian, Michael Bojazi","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A constraint on Solar System formation is the high <sup>26</sup>Al/<sup>27</sup>Al abundance ratio, 17 times higher than the average Galactic ratio, while the <sup>60</sup>Fe/<sup>56</sup>Fe value was lower than the Galactic value. This challenges the assumption that a nearby supernova was responsible for the injection of these short-lived radionuclides into the early Solar System. We suggest that the Solar System was formed by triggered star formation at the edge of a Wolf-Rayet (W-R) bubble. We discuss the details of various processes within the model using numerical simulations, and analytic and semi-analytic calculations, and conclude that it is a viable model that can explain the initial abundances of <sup>26</sup>Al and <sup>60</sup>Fe. We estimate that 1%-16% of all Sun-like stars could have formed in such a setting.</p>","PeriodicalId":74548,"journal":{"name":"Proceedings of the International Astronomical Union. International Astronomical Union","volume":"14 S345","pages":"78-82"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6425492/pdf/nihms-1523334.pdf","citationCount":"0","resultStr":"{\"title\":\"Triggered Star Formation inside the Shell of a Wolf-Rayet Bubble as the Origin of the Solar System.\",\"authors\":\"Vikram V Dwarkadas, Nicolas Dauphas, Bradley Meyer, Peter Boyajian, Michael Bojazi\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A constraint on Solar System formation is the high <sup>26</sup>Al/<sup>27</sup>Al abundance ratio, 17 times higher than the average Galactic ratio, while the <sup>60</sup>Fe/<sup>56</sup>Fe value was lower than the Galactic value. This challenges the assumption that a nearby supernova was responsible for the injection of these short-lived radionuclides into the early Solar System. We suggest that the Solar System was formed by triggered star formation at the edge of a Wolf-Rayet (W-R) bubble. We discuss the details of various processes within the model using numerical simulations, and analytic and semi-analytic calculations, and conclude that it is a viable model that can explain the initial abundances of <sup>26</sup>Al and <sup>60</sup>Fe. We estimate that 1%-16% of all Sun-like stars could have formed in such a setting.</p>\",\"PeriodicalId\":74548,\"journal\":{\"name\":\"Proceedings of the International Astronomical Union. International Astronomical Union\",\"volume\":\"14 S345\",\"pages\":\"78-82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6425492/pdf/nihms-1523334.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Astronomical Union. International Astronomical Union\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Astronomical Union. International Astronomical Union","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Triggered Star Formation inside the Shell of a Wolf-Rayet Bubble as the Origin of the Solar System.
A constraint on Solar System formation is the high 26Al/27Al abundance ratio, 17 times higher than the average Galactic ratio, while the 60Fe/56Fe value was lower than the Galactic value. This challenges the assumption that a nearby supernova was responsible for the injection of these short-lived radionuclides into the early Solar System. We suggest that the Solar System was formed by triggered star formation at the edge of a Wolf-Rayet (W-R) bubble. We discuss the details of various processes within the model using numerical simulations, and analytic and semi-analytic calculations, and conclude that it is a viable model that can explain the initial abundances of 26Al and 60Fe. We estimate that 1%-16% of all Sun-like stars could have formed in such a setting.