在高海拔条件下,肠道神经胶质细胞通过分泌S100β加重肠上皮屏障损伤。

IF 6.3 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Huichao Xie, Xiong Zeng, Wensheng Wang, Wei Wang, Ben Han, QianShan Tan, Qiu Hu, Xingyu Liu, Shuaishuai Chen, Jun Chen, Lihua Sun, Yihui Chen, Weidong Xiao
{"title":"在高海拔条件下,肠道神经胶质细胞通过分泌S100β加重肠上皮屏障损伤。","authors":"Huichao Xie, Xiong Zeng, Wensheng Wang, Wei Wang, Ben Han, QianShan Tan, Qiu Hu, Xingyu Liu, Shuaishuai Chen, Jun Chen, Lihua Sun, Yihui Chen, Weidong Xiao","doi":"10.1186/s43556-023-00143-1","DOIUrl":null,"url":null,"abstract":"<p><p>Damage to the intestinal epithelial barrier (IEB) has been reported under high-altitude (HA) conditions and may be responsible for HA-associated gastrointestinal (GI) disorders. However, this pathogenetic mechanism does not fully explain the GI stress symptoms, such as flatulence and motility diarrhea, which accompany the IEB damage under HA conditions, especially for the people exposed to HA acutely. In the present study, we collected the blood samples from the people who lived at HA and found the concentration of enteric glial cells (EGCs)-associated biomarkers increased significantly. HA mouse model was then established and the results revealed that EGCs were involved in IEB damage. Zona occludens (ZO)-1, occludin, and claudin-1 expression was negatively correlated with that of glial fibrillary acidic protein (GFAP) and S100β under HA conditions. In order to learn more about how EGCs influence IEB, the in vitro EGC and MODE-K hypoxia experiments that used hypoxic stimulation for simulating in vivo exposure to HA was performed. We found that hypoxia increased S100β secretion in EGCs. And MODE-K cells cultured in medium conditioned by hypoxic EGCs showed low ZO-1, occludin, and claudin-1 levels of expression. Furthermore, treatment of MODE-K cells with recombinant mouse S100β resulted in diminished levels of ZO-1, occludin, and claudin-1 expression. Thus, HA exposure induces greater S100β secretion by EGCs, which aggravates the damage to the IEB. This study has revealed a novel mechanism of IEB damage under HA conditions, and suggest that EGCs may constitute a fresh avenue for the avoidance of GI disorders at HA.</p>","PeriodicalId":74218,"journal":{"name":"Molecular biomedicine","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542628/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enteric glial cells aggravate the intestinal epithelial barrier damage by secreting S100β under high-altitude conditions.\",\"authors\":\"Huichao Xie, Xiong Zeng, Wensheng Wang, Wei Wang, Ben Han, QianShan Tan, Qiu Hu, Xingyu Liu, Shuaishuai Chen, Jun Chen, Lihua Sun, Yihui Chen, Weidong Xiao\",\"doi\":\"10.1186/s43556-023-00143-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Damage to the intestinal epithelial barrier (IEB) has been reported under high-altitude (HA) conditions and may be responsible for HA-associated gastrointestinal (GI) disorders. However, this pathogenetic mechanism does not fully explain the GI stress symptoms, such as flatulence and motility diarrhea, which accompany the IEB damage under HA conditions, especially for the people exposed to HA acutely. In the present study, we collected the blood samples from the people who lived at HA and found the concentration of enteric glial cells (EGCs)-associated biomarkers increased significantly. HA mouse model was then established and the results revealed that EGCs were involved in IEB damage. Zona occludens (ZO)-1, occludin, and claudin-1 expression was negatively correlated with that of glial fibrillary acidic protein (GFAP) and S100β under HA conditions. In order to learn more about how EGCs influence IEB, the in vitro EGC and MODE-K hypoxia experiments that used hypoxic stimulation for simulating in vivo exposure to HA was performed. We found that hypoxia increased S100β secretion in EGCs. And MODE-K cells cultured in medium conditioned by hypoxic EGCs showed low ZO-1, occludin, and claudin-1 levels of expression. Furthermore, treatment of MODE-K cells with recombinant mouse S100β resulted in diminished levels of ZO-1, occludin, and claudin-1 expression. Thus, HA exposure induces greater S100β secretion by EGCs, which aggravates the damage to the IEB. This study has revealed a novel mechanism of IEB damage under HA conditions, and suggest that EGCs may constitute a fresh avenue for the avoidance of GI disorders at HA.</p>\",\"PeriodicalId\":74218,\"journal\":{\"name\":\"Molecular biomedicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542628/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43556-023-00143-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43556-023-00143-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

据报道,在高海拔(HA)条件下,肠上皮屏障(IEB)受损,可能是HA相关胃肠道(GI)疾病的原因。然而,这种发病机制并不能完全解释在HA条件下伴随IEB损伤的胃肠道应激症状,如胀气和运动性腹泻,尤其是对于急性接触HA的人。在本研究中,我们收集了居住在HA的人的血液样本,发现肠道神经胶质细胞(EGCs)相关生物标志物的浓度显著增加。然后建立HA小鼠模型,结果表明EGCs参与了IEB损伤。HA条件下,闭塞带(ZO)-1、闭塞素和claudin-1的表达与胶质纤维酸性蛋白(GFAP)和S100β的表达呈负相关。为了进一步了解EGC如何影响IEB,进行了体外EGC和MODE-K缺氧实验,使用缺氧刺激模拟体内暴露于HA。我们发现缺氧增加了EGCs中S100β的分泌。在缺氧EGCs条件下培养的MODE-K细胞显示出低ZO-1、occludin和claudin-1水平的表达。此外,用重组小鼠S100β处理MODE-K细胞导致ZO-1、occludin和claudin-1表达水平降低。因此,HA暴露诱导EGCs分泌更多的S100β,这加剧了对IEB的损伤。这项研究揭示了HA条件下IEB损伤的新机制,并表明EGCs可能是避免HA胃肠道疾病的新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enteric glial cells aggravate the intestinal epithelial barrier damage by secreting S100β under high-altitude conditions.

Enteric glial cells aggravate the intestinal epithelial barrier damage by secreting S100β under high-altitude conditions.

Enteric glial cells aggravate the intestinal epithelial barrier damage by secreting S100β under high-altitude conditions.

Enteric glial cells aggravate the intestinal epithelial barrier damage by secreting S100β under high-altitude conditions.

Damage to the intestinal epithelial barrier (IEB) has been reported under high-altitude (HA) conditions and may be responsible for HA-associated gastrointestinal (GI) disorders. However, this pathogenetic mechanism does not fully explain the GI stress symptoms, such as flatulence and motility diarrhea, which accompany the IEB damage under HA conditions, especially for the people exposed to HA acutely. In the present study, we collected the blood samples from the people who lived at HA and found the concentration of enteric glial cells (EGCs)-associated biomarkers increased significantly. HA mouse model was then established and the results revealed that EGCs were involved in IEB damage. Zona occludens (ZO)-1, occludin, and claudin-1 expression was negatively correlated with that of glial fibrillary acidic protein (GFAP) and S100β under HA conditions. In order to learn more about how EGCs influence IEB, the in vitro EGC and MODE-K hypoxia experiments that used hypoxic stimulation for simulating in vivo exposure to HA was performed. We found that hypoxia increased S100β secretion in EGCs. And MODE-K cells cultured in medium conditioned by hypoxic EGCs showed low ZO-1, occludin, and claudin-1 levels of expression. Furthermore, treatment of MODE-K cells with recombinant mouse S100β resulted in diminished levels of ZO-1, occludin, and claudin-1 expression. Thus, HA exposure induces greater S100β secretion by EGCs, which aggravates the damage to the IEB. This study has revealed a novel mechanism of IEB damage under HA conditions, and suggest that EGCs may constitute a fresh avenue for the avoidance of GI disorders at HA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信