细胞自主极化通过平面细胞极性信号通路。

Alexis T Weiner, Silas Boye Nissen, Kaye Suyama, Bomsoo Cho, Gandhy Pierre-Louis, Jeffrey D Axelrod
{"title":"细胞自主极化通过平面细胞极性信号通路。","authors":"Alexis T Weiner, Silas Boye Nissen, Kaye Suyama, Bomsoo Cho, Gandhy Pierre-Louis, Jeffrey D Axelrod","doi":"10.1101/2023.09.26.559449","DOIUrl":null,"url":null,"abstract":"<p><p>Planar Cell Polarity (PCP) signaling polarizes epithelial cells in a plane orthogonal to their apical-basal axis. A core PCP signaling module segregates two distinct molecular subcomplexes to opposite sides of cells and coordinates the direction of polarization between neighboring cells. Homodimers of the atypical cadherin Flamingo are thought to scaffold these subcomplexes and are required for intercellular polarity signaling. Feedback is required for polarization, but whether feedback requires intercellular and/or intracellular pathways is unknown, and traditional genetic tools have limited utility in dissecting these mechanisms. Using novel tools, we show that cells lacking Flamingo, or bearing a homodimerization-deficient Flamingo, do polarize, indicating that functional PCP subcomplexes form and segregate cell-autonomously. We identify feedback pathways and propose a competitive binding-based asymmetry amplifying mechanism that each operate cell-autonomously. The intrinsic logic of PCP signaling is therefore more similar to that in single cell polarizing systems than was previously recognized.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bc/3e/nihpp-2023.09.26.559449v1.PMC10557733.pdf","citationCount":"0","resultStr":"{\"title\":\"Cell autonomous polarization by the planar cell polarity signaling pathway.\",\"authors\":\"Alexis T Weiner, Silas Boye Nissen, Kaye Suyama, Bomsoo Cho, Gandhy Pierre-Louis, Jeffrey D Axelrod\",\"doi\":\"10.1101/2023.09.26.559449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Planar Cell Polarity (PCP) signaling polarizes epithelial cells in a plane orthogonal to their apical-basal axis. A core PCP signaling module segregates two distinct molecular subcomplexes to opposite sides of cells and coordinates the direction of polarization between neighboring cells. Homodimers of the atypical cadherin Flamingo are thought to scaffold these subcomplexes and are required for intercellular polarity signaling. Feedback is required for polarization, but whether feedback requires intercellular and/or intracellular pathways is unknown, and traditional genetic tools have limited utility in dissecting these mechanisms. Using novel tools, we show that cells lacking Flamingo, or bearing a homodimerization-deficient Flamingo, do polarize, indicating that functional PCP subcomplexes form and segregate cell-autonomously. We identify feedback pathways and propose a competitive binding-based asymmetry amplifying mechanism that each operate cell-autonomously. The intrinsic logic of PCP signaling is therefore more similar to that in single cell polarizing systems than was previously recognized.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bc/3e/nihpp-2023.09.26.559449v1.PMC10557733.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.09.26.559449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.09.26.559449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

平面细胞极性(PCP)信号使上皮细胞在与其顶端-基底轴正交的平面中极化。核心PCP信号模块既在细胞内产生分子不对称性,又协调相邻细胞之间的极化方向。核心蛋白的两个亚复合体分离到细胞的相对两侧,形成极性轴。非典型钙粘蛋白火烈鸟的同源二聚体被认为是这些亚复合物组装的支架,也是细胞间极性信号传导所必需的。火烈鸟同源二聚体在支架和细胞间通讯中的核心作用表明,通过火烈鸟传递细胞间信号的细胞应该不会极化。我们发现,缺乏火烈鸟的细胞,或者携带不能同源二聚的截短的火烈鸟,实际上会发生极化。细胞极化需要正反馈和负反馈,在多细胞组织中,反馈可能涉及细胞内和细胞间途径。我们确定了正反馈和负反馈途径,这些途径使细胞自主运作以驱动极化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cell autonomous polarization by the planar cell polarity signaling pathway.

Cell autonomous polarization by the planar cell polarity signaling pathway.

Cell autonomous polarization by the planar cell polarity signaling pathway.

Cell autonomous polarization by the planar cell polarity signaling pathway.

Planar Cell Polarity (PCP) signaling polarizes epithelial cells in a plane orthogonal to their apical-basal axis. A core PCP signaling module segregates two distinct molecular subcomplexes to opposite sides of cells and coordinates the direction of polarization between neighboring cells. Homodimers of the atypical cadherin Flamingo are thought to scaffold these subcomplexes and are required for intercellular polarity signaling. Feedback is required for polarization, but whether feedback requires intercellular and/or intracellular pathways is unknown, and traditional genetic tools have limited utility in dissecting these mechanisms. Using novel tools, we show that cells lacking Flamingo, or bearing a homodimerization-deficient Flamingo, do polarize, indicating that functional PCP subcomplexes form and segregate cell-autonomously. We identify feedback pathways and propose a competitive binding-based asymmetry amplifying mechanism that each operate cell-autonomously. The intrinsic logic of PCP signaling is therefore more similar to that in single cell polarizing systems than was previously recognized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信