Jens Bobers, Mateja Klika Škopić, Robin Dinter, Piriyanth Sakthithasan, Laura Neukirch, Christian Gramse, Ralf Weberskirch, Andreas Brunschweiger*, Norbert Kockmann*
{"title":"用于dna标记底物的反应筛选和验证的自动试剂分配系统的设计","authors":"Jens Bobers, Mateja Klika Škopić, Robin Dinter, Piriyanth Sakthithasan, Laura Neukirch, Christian Gramse, Ralf Weberskirch, Andreas Brunschweiger*, Norbert Kockmann*","doi":"10.1021/acscombsci.9b00207","DOIUrl":null,"url":null,"abstract":"<p >Laboratory automation strategies have vast potential for accelerating discovery processes. They enable higher efficiency and throughput for time-consuming screening procedures and reduce error-prone manual steps. Automating repetitive procedures can for instance support chemists in optimizing chemical reactions. Particularly, the technology of DNA-encoded libraries (DELs) may benefit from automation techniques, since translation of chemical reactions to DNA-tagged reactants often requires screening of multiple reaction parameters and evaluation of large numbers of reactants. Here, we describe a portable, automated system for reagent dispensing that was designed from open source materials. The system was validated by performing amide coupling of carboxylic acids to DNA-linked amine and a micelle-mediated Povarov reaction to DNA-tagged hexahydropyrroloquinolines. The latter reaction required accurate pipetting of multiple components including different solvents and a surface-active reagent. Analysis of reactions demonstrated that the robotic system achieved high accuracy comparable to experimentation by an experienced chemist with the potential of higher throughput.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acscombsci.9b00207","citationCount":"13","resultStr":"{\"title\":\"Design of an Automated Reagent-Dispensing System for Reaction Screening and Validation with DNA-Tagged Substrates\",\"authors\":\"Jens Bobers, Mateja Klika Škopić, Robin Dinter, Piriyanth Sakthithasan, Laura Neukirch, Christian Gramse, Ralf Weberskirch, Andreas Brunschweiger*, Norbert Kockmann*\",\"doi\":\"10.1021/acscombsci.9b00207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Laboratory automation strategies have vast potential for accelerating discovery processes. They enable higher efficiency and throughput for time-consuming screening procedures and reduce error-prone manual steps. Automating repetitive procedures can for instance support chemists in optimizing chemical reactions. Particularly, the technology of DNA-encoded libraries (DELs) may benefit from automation techniques, since translation of chemical reactions to DNA-tagged reactants often requires screening of multiple reaction parameters and evaluation of large numbers of reactants. Here, we describe a portable, automated system for reagent dispensing that was designed from open source materials. The system was validated by performing amide coupling of carboxylic acids to DNA-linked amine and a micelle-mediated Povarov reaction to DNA-tagged hexahydropyrroloquinolines. The latter reaction required accurate pipetting of multiple components including different solvents and a surface-active reagent. Analysis of reactions demonstrated that the robotic system achieved high accuracy comparable to experimentation by an experienced chemist with the potential of higher throughput.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2020-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1021/acscombsci.9b00207\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscombsci.9b00207\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscombsci.9b00207","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design of an Automated Reagent-Dispensing System for Reaction Screening and Validation with DNA-Tagged Substrates
Laboratory automation strategies have vast potential for accelerating discovery processes. They enable higher efficiency and throughput for time-consuming screening procedures and reduce error-prone manual steps. Automating repetitive procedures can for instance support chemists in optimizing chemical reactions. Particularly, the technology of DNA-encoded libraries (DELs) may benefit from automation techniques, since translation of chemical reactions to DNA-tagged reactants often requires screening of multiple reaction parameters and evaluation of large numbers of reactants. Here, we describe a portable, automated system for reagent dispensing that was designed from open source materials. The system was validated by performing amide coupling of carboxylic acids to DNA-linked amine and a micelle-mediated Povarov reaction to DNA-tagged hexahydropyrroloquinolines. The latter reaction required accurate pipetting of multiple components including different solvents and a surface-active reagent. Analysis of reactions demonstrated that the robotic system achieved high accuracy comparable to experimentation by an experienced chemist with the potential of higher throughput.