Andrea V Haas, Andrew Koefoed, Rebecca M Easly, Johanna Celli, Mahyar Heydarpour, Istvan Bonyhay, Roy Freeman, Gail K Adler
{"title":"低血糖对2型糖尿病患者压力反射敏感性的影响:糖尿病患者心血管功能自主控制的意义。","authors":"Andrea V Haas, Andrew Koefoed, Rebecca M Easly, Johanna Celli, Mahyar Heydarpour, Istvan Bonyhay, Roy Freeman, Gail K Adler","doi":"10.1007/s10286-023-00983-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Hypoglycemia is associated with increased mortality, though the mechanisms underlying this association are not established. Hypoglycemia impairs the counterregulatory hormonal and autonomic responses to subsequent hypoglycemia. It is unknown whether hypoglycemia elicits a generalized impairment in autonomic control of cardiovascular function in individuals with type 2 diabetes. We tested the hypothesis that in individuals with type 2 diabetes, hypoglycemia impairs a key measure of cardiovascular autonomic homeostasis, baroreflex sensitivity.</p><p><strong>Methods: </strong>Sixteen individuals with well-controlled type 2 diabetes and without known cardiovascular disease were exposed to two 90-min episodes of experimental hypoglycemia (2.8 mmol/L, 50 mg/dL) on the same day. All individuals experienced a hypoglycemic-hyperinsulinemic clamp in the morning (AM clamp) and again in the afternoon (PM clamp). Baroreflex sensitivity was assessed using the modified Oxford method before the initiation of each hypoglycemic-hyperinsulinemic clamp, during the last 30 min of hypoglycemia, and the following morning. A mixed effects model adjusting for sex, age, BMI, and insulin level, demonstrated a significant effect of hypoglycemia on baroreflex sensitivity. The study is registered at ClinicalTrials.gov (NCT03422471).</p><p><strong>Results: </strong>Baroreflex sensitivity during PM hypoglycemia was reduced compared to baseline, during AM hypoglycemia, and the next day. Insulin levels positively correlated with baroreflex sensitivity at baseline and during AM hypoglycemia.</p><p><strong>Conclusion: </strong>Exposure to hypoglycemia impairs a key measure of autonomic control of cardiovascular function and, thus, may increase the risk of cardiac arrhythmias and blood pressure lability in individuals with type 2 diabetes. This effect is attenuated in part by increased insulin levels.</p>","PeriodicalId":10168,"journal":{"name":"Clinical Autonomic Research","volume":" ","pages":"727-735"},"PeriodicalIF":3.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of hypoglycemia on baroreflex sensitivity in individuals with type 2 diabetes: implications for autonomic control of cardiovascular function in diabetes.\",\"authors\":\"Andrea V Haas, Andrew Koefoed, Rebecca M Easly, Johanna Celli, Mahyar Heydarpour, Istvan Bonyhay, Roy Freeman, Gail K Adler\",\"doi\":\"10.1007/s10286-023-00983-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Hypoglycemia is associated with increased mortality, though the mechanisms underlying this association are not established. Hypoglycemia impairs the counterregulatory hormonal and autonomic responses to subsequent hypoglycemia. It is unknown whether hypoglycemia elicits a generalized impairment in autonomic control of cardiovascular function in individuals with type 2 diabetes. We tested the hypothesis that in individuals with type 2 diabetes, hypoglycemia impairs a key measure of cardiovascular autonomic homeostasis, baroreflex sensitivity.</p><p><strong>Methods: </strong>Sixteen individuals with well-controlled type 2 diabetes and without known cardiovascular disease were exposed to two 90-min episodes of experimental hypoglycemia (2.8 mmol/L, 50 mg/dL) on the same day. All individuals experienced a hypoglycemic-hyperinsulinemic clamp in the morning (AM clamp) and again in the afternoon (PM clamp). Baroreflex sensitivity was assessed using the modified Oxford method before the initiation of each hypoglycemic-hyperinsulinemic clamp, during the last 30 min of hypoglycemia, and the following morning. A mixed effects model adjusting for sex, age, BMI, and insulin level, demonstrated a significant effect of hypoglycemia on baroreflex sensitivity. The study is registered at ClinicalTrials.gov (NCT03422471).</p><p><strong>Results: </strong>Baroreflex sensitivity during PM hypoglycemia was reduced compared to baseline, during AM hypoglycemia, and the next day. Insulin levels positively correlated with baroreflex sensitivity at baseline and during AM hypoglycemia.</p><p><strong>Conclusion: </strong>Exposure to hypoglycemia impairs a key measure of autonomic control of cardiovascular function and, thus, may increase the risk of cardiac arrhythmias and blood pressure lability in individuals with type 2 diabetes. This effect is attenuated in part by increased insulin levels.</p>\",\"PeriodicalId\":10168,\"journal\":{\"name\":\"Clinical Autonomic Research\",\"volume\":\" \",\"pages\":\"727-735\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Autonomic Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10286-023-00983-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Autonomic Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10286-023-00983-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Effect of hypoglycemia on baroreflex sensitivity in individuals with type 2 diabetes: implications for autonomic control of cardiovascular function in diabetes.
Purpose: Hypoglycemia is associated with increased mortality, though the mechanisms underlying this association are not established. Hypoglycemia impairs the counterregulatory hormonal and autonomic responses to subsequent hypoglycemia. It is unknown whether hypoglycemia elicits a generalized impairment in autonomic control of cardiovascular function in individuals with type 2 diabetes. We tested the hypothesis that in individuals with type 2 diabetes, hypoglycemia impairs a key measure of cardiovascular autonomic homeostasis, baroreflex sensitivity.
Methods: Sixteen individuals with well-controlled type 2 diabetes and without known cardiovascular disease were exposed to two 90-min episodes of experimental hypoglycemia (2.8 mmol/L, 50 mg/dL) on the same day. All individuals experienced a hypoglycemic-hyperinsulinemic clamp in the morning (AM clamp) and again in the afternoon (PM clamp). Baroreflex sensitivity was assessed using the modified Oxford method before the initiation of each hypoglycemic-hyperinsulinemic clamp, during the last 30 min of hypoglycemia, and the following morning. A mixed effects model adjusting for sex, age, BMI, and insulin level, demonstrated a significant effect of hypoglycemia on baroreflex sensitivity. The study is registered at ClinicalTrials.gov (NCT03422471).
Results: Baroreflex sensitivity during PM hypoglycemia was reduced compared to baseline, during AM hypoglycemia, and the next day. Insulin levels positively correlated with baroreflex sensitivity at baseline and during AM hypoglycemia.
Conclusion: Exposure to hypoglycemia impairs a key measure of autonomic control of cardiovascular function and, thus, may increase the risk of cardiac arrhythmias and blood pressure lability in individuals with type 2 diabetes. This effect is attenuated in part by increased insulin levels.
期刊介绍:
Clinical Autonomic Research aims to draw together and disseminate research work from various disciplines and specialties dealing with clinical problems resulting from autonomic dysfunction. Areas to be covered include: cardiovascular system, neurology, diabetes, endocrinology, urology, pain disorders, ophthalmology, gastroenterology, toxicology and clinical pharmacology, skin infectious diseases, renal disease.
This journal is an essential source of new information for everyone working in areas involving the autonomic nervous system. A major feature of Clinical Autonomic Research is its speed of publication coupled with the highest refereeing standards.