Anna Albisetti , Silvan Hälg , Martin Zoltner , Pascal Mäser , Natalie Wiedemar
{"title":"Suramin在非洲锥虫中的作用涉及RuvB样DNA解旋酶。","authors":"Anna Albisetti , Silvan Hälg , Martin Zoltner , Pascal Mäser , Natalie Wiedemar","doi":"10.1016/j.ijpddr.2023.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>Suramin is one of the oldest drugs in use today. It is still the treatment of choice for the hemolymphatic stage of African sleeping sickness caused by <em>Trypanosoma brucei rhodesiense,</em> and it is also used for surra in camels caused by <em>Trypanosoma evansi</em>. Yet despite one hundred years of use, suramin's mode of action is not fully understood. Suramin is a polypharmacological molecule that inhibits diverse proteins. Here we demonstrate that a DNA helicase of the pontin/ruvB-like 1 family, termed <em>T. brucei</em> RuvBL1, is involved in suramin resistance in African trypanosomes. Bloodstream-form <em>T. b. rhodesiense</em> under long-term selection for suramin resistance acquired a homozygous point mutation, isoleucine-312 to valine, close to the ATP binding site of <em>T. brucei</em> RuvBL1. The introduction of this missense mutation, by reverse genetics, into drug-sensitive trypanosomes significantly decreased their sensitivity to suramin. Intriguingly, the corresponding residue of <em>T. evansi</em> RuvBL1 was found mutated in a suramin-resistant field isolate, in that case to a leucine. RuvBL1 (Tb927.4.1270) is predicted to build a heterohexameric complex with RuvBL2 (Tb927.4.2000). RNAi-mediated silencing of gene expression of either <em>T. brucei</em> RuvBL1 or RuvBL2 caused cell death within 72 h. At 36 h after induction of RNAi, bloodstream-form trypanosomes exhibited a cytokinesis defect resulting in the accumulation of cells with two nuclei and two or more kinetoplasts. Taken together, these data indicate that RuvBL1 DNA helicase is involved in suramin action in African trypanosomes.</p></div>","PeriodicalId":13775,"journal":{"name":"International Journal for Parasitology: Drugs and Drug Resistance","volume":"23 ","pages":"Pages 44-53"},"PeriodicalIF":4.1000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7f/38/main.PMC10520940.pdf","citationCount":"1","resultStr":"{\"title\":\"Suramin action in African trypanosomes involves a RuvB-like DNA helicase\",\"authors\":\"Anna Albisetti , Silvan Hälg , Martin Zoltner , Pascal Mäser , Natalie Wiedemar\",\"doi\":\"10.1016/j.ijpddr.2023.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Suramin is one of the oldest drugs in use today. It is still the treatment of choice for the hemolymphatic stage of African sleeping sickness caused by <em>Trypanosoma brucei rhodesiense,</em> and it is also used for surra in camels caused by <em>Trypanosoma evansi</em>. Yet despite one hundred years of use, suramin's mode of action is not fully understood. Suramin is a polypharmacological molecule that inhibits diverse proteins. Here we demonstrate that a DNA helicase of the pontin/ruvB-like 1 family, termed <em>T. brucei</em> RuvBL1, is involved in suramin resistance in African trypanosomes. Bloodstream-form <em>T. b. rhodesiense</em> under long-term selection for suramin resistance acquired a homozygous point mutation, isoleucine-312 to valine, close to the ATP binding site of <em>T. brucei</em> RuvBL1. The introduction of this missense mutation, by reverse genetics, into drug-sensitive trypanosomes significantly decreased their sensitivity to suramin. Intriguingly, the corresponding residue of <em>T. evansi</em> RuvBL1 was found mutated in a suramin-resistant field isolate, in that case to a leucine. RuvBL1 (Tb927.4.1270) is predicted to build a heterohexameric complex with RuvBL2 (Tb927.4.2000). RNAi-mediated silencing of gene expression of either <em>T. brucei</em> RuvBL1 or RuvBL2 caused cell death within 72 h. At 36 h after induction of RNAi, bloodstream-form trypanosomes exhibited a cytokinesis defect resulting in the accumulation of cells with two nuclei and two or more kinetoplasts. Taken together, these data indicate that RuvBL1 DNA helicase is involved in suramin action in African trypanosomes.</p></div>\",\"PeriodicalId\":13775,\"journal\":{\"name\":\"International Journal for Parasitology: Drugs and Drug Resistance\",\"volume\":\"23 \",\"pages\":\"Pages 44-53\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7f/38/main.PMC10520940.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Parasitology: Drugs and Drug Resistance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211320723000301\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Parasitology: Drugs and Drug Resistance","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211320723000301","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Suramin action in African trypanosomes involves a RuvB-like DNA helicase
Suramin is one of the oldest drugs in use today. It is still the treatment of choice for the hemolymphatic stage of African sleeping sickness caused by Trypanosoma brucei rhodesiense, and it is also used for surra in camels caused by Trypanosoma evansi. Yet despite one hundred years of use, suramin's mode of action is not fully understood. Suramin is a polypharmacological molecule that inhibits diverse proteins. Here we demonstrate that a DNA helicase of the pontin/ruvB-like 1 family, termed T. brucei RuvBL1, is involved in suramin resistance in African trypanosomes. Bloodstream-form T. b. rhodesiense under long-term selection for suramin resistance acquired a homozygous point mutation, isoleucine-312 to valine, close to the ATP binding site of T. brucei RuvBL1. The introduction of this missense mutation, by reverse genetics, into drug-sensitive trypanosomes significantly decreased their sensitivity to suramin. Intriguingly, the corresponding residue of T. evansi RuvBL1 was found mutated in a suramin-resistant field isolate, in that case to a leucine. RuvBL1 (Tb927.4.1270) is predicted to build a heterohexameric complex with RuvBL2 (Tb927.4.2000). RNAi-mediated silencing of gene expression of either T. brucei RuvBL1 or RuvBL2 caused cell death within 72 h. At 36 h after induction of RNAi, bloodstream-form trypanosomes exhibited a cytokinesis defect resulting in the accumulation of cells with two nuclei and two or more kinetoplasts. Taken together, these data indicate that RuvBL1 DNA helicase is involved in suramin action in African trypanosomes.
期刊介绍:
The International Journal for Parasitology – Drugs and Drug Resistance is one of a series of specialist, open access journals launched by the International Journal for Parasitology. It publishes the results of original research in the area of anti-parasite drug identification, development and evaluation, and parasite drug resistance. The journal also covers research into natural products as anti-parasitic agents, and bioactive parasite products. Studies can be aimed at unicellular or multicellular parasites of human or veterinary importance.