Madeline E Power, Nicholas R Fernandez, Olaiya Peter Oni, Aditaya Kalia, Jillian L Rourke
{"title":"非营养性甜味剂三氯蔗糖增加组成型活性孤儿G蛋白偶联受体GPR52的β-抑制蛋白信号传导。","authors":"Madeline E Power, Nicholas R Fernandez, Olaiya Peter Oni, Aditaya Kalia, Jillian L Rourke","doi":"10.1139/cjpp-2023-0199","DOIUrl":null,"url":null,"abstract":"<p><p>Non-nutritive sweeteners are popular food additives owing to their low caloric density and powerful sweetness relative to natural sugars. Their lack of metabolism contributes to evidence proclaiming their safety, yet several studies contradict this, demonstrating that sweeteners activate sweet taste G protein-coupled receptors (GPCRs) and elicit deleterious metabolic functions through unknown mechanisms. We hypothesize that activation of GPCRs, particularly orphan receptors due to their abundance in metabolically active tissues, contributes to the biological activity of sweeteners. We quantified the response of 64 orphans to the sweeteners saccharin and sucralose using a high-throughput β-arrestin-2 recruitment assay (PRESTO-Tango). GPR52 was the sole receptor that significantly responded to a mixture of sucralose and saccharin. Subsequent experiments revealed sucralose as the activating sweetener. Activation of GPR52 was concentration-dependent, with an EC<sub>50</sub> of 0.23 mmol/L and an Emax of 3.43 ± 0.24 fold change at 4 mmol/L. GPR52 constitutively activates CRE pathways; however, we show that sucralose-induced activation of GPR52 does not further activate this pathway. Identification of this novel sucralose-GPCR interaction supports the notion that sucralose elicits off-target signaling through the activation of GPR52, calling into question sucralose's assumed lack of bioactivity.</p>","PeriodicalId":9520,"journal":{"name":"Canadian journal of physiology and pharmacology","volume":" ","pages":"116-127"},"PeriodicalIF":1.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The non-nutritive sweetener sucralose increases β-arrestin signaling at the constitutively active orphan G protein-coupled receptor GPR52.\",\"authors\":\"Madeline E Power, Nicholas R Fernandez, Olaiya Peter Oni, Aditaya Kalia, Jillian L Rourke\",\"doi\":\"10.1139/cjpp-2023-0199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-nutritive sweeteners are popular food additives owing to their low caloric density and powerful sweetness relative to natural sugars. Their lack of metabolism contributes to evidence proclaiming their safety, yet several studies contradict this, demonstrating that sweeteners activate sweet taste G protein-coupled receptors (GPCRs) and elicit deleterious metabolic functions through unknown mechanisms. We hypothesize that activation of GPCRs, particularly orphan receptors due to their abundance in metabolically active tissues, contributes to the biological activity of sweeteners. We quantified the response of 64 orphans to the sweeteners saccharin and sucralose using a high-throughput β-arrestin-2 recruitment assay (PRESTO-Tango). GPR52 was the sole receptor that significantly responded to a mixture of sucralose and saccharin. Subsequent experiments revealed sucralose as the activating sweetener. Activation of GPR52 was concentration-dependent, with an EC<sub>50</sub> of 0.23 mmol/L and an Emax of 3.43 ± 0.24 fold change at 4 mmol/L. GPR52 constitutively activates CRE pathways; however, we show that sucralose-induced activation of GPR52 does not further activate this pathway. Identification of this novel sucralose-GPCR interaction supports the notion that sucralose elicits off-target signaling through the activation of GPR52, calling into question sucralose's assumed lack of bioactivity.</p>\",\"PeriodicalId\":9520,\"journal\":{\"name\":\"Canadian journal of physiology and pharmacology\",\"volume\":\" \",\"pages\":\"116-127\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of physiology and pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1139/cjpp-2023-0199\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of physiology and pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1139/cjpp-2023-0199","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
The non-nutritive sweetener sucralose increases β-arrestin signaling at the constitutively active orphan G protein-coupled receptor GPR52.
Non-nutritive sweeteners are popular food additives owing to their low caloric density and powerful sweetness relative to natural sugars. Their lack of metabolism contributes to evidence proclaiming their safety, yet several studies contradict this, demonstrating that sweeteners activate sweet taste G protein-coupled receptors (GPCRs) and elicit deleterious metabolic functions through unknown mechanisms. We hypothesize that activation of GPCRs, particularly orphan receptors due to their abundance in metabolically active tissues, contributes to the biological activity of sweeteners. We quantified the response of 64 orphans to the sweeteners saccharin and sucralose using a high-throughput β-arrestin-2 recruitment assay (PRESTO-Tango). GPR52 was the sole receptor that significantly responded to a mixture of sucralose and saccharin. Subsequent experiments revealed sucralose as the activating sweetener. Activation of GPR52 was concentration-dependent, with an EC50 of 0.23 mmol/L and an Emax of 3.43 ± 0.24 fold change at 4 mmol/L. GPR52 constitutively activates CRE pathways; however, we show that sucralose-induced activation of GPR52 does not further activate this pathway. Identification of this novel sucralose-GPCR interaction supports the notion that sucralose elicits off-target signaling through the activation of GPR52, calling into question sucralose's assumed lack of bioactivity.
期刊介绍:
Published since 1929, the Canadian Journal of Physiology and Pharmacology is a monthly journal that reports current research in all aspects of physiology, nutrition, pharmacology, and toxicology, contributed by recognized experts and scientists. It publishes symposium reviews and award lectures and occasionally dedicates entire issues or portions of issues to subjects of special interest to its international readership. The journal periodically publishes a “Made In Canada” special section that features invited review articles from internationally recognized scientists who have received some of their training in Canada.