Alessandra Franco, Jaeyoon Song, Christina Chambers, Alessandro Sette, Alba Grifoni
{"title":"SARS-CoV-2尖峰特异性调节T细胞(Treg)在疫苗接种者中扩展和发展记忆,表明免疫调节在预防新冠肺炎严重症状中发挥作用。","authors":"Alessandra Franco, Jaeyoon Song, Christina Chambers, Alessandro Sette, Alba Grifoni","doi":"10.1080/08916934.2023.2259133","DOIUrl":null,"url":null,"abstract":"<p><p>We enrolled healthy subjects that received 2 to 4 injections of mRNA-based vaccination to prevent COVID-19 months to a year from the last vaccine boost, and we found numerous SARS-CoV-2 spike-specific regulatory T cell (Treg) that developed T cell memory as effector memory T cells (T<sub>EM</sub>) and central memory T cells (T<sub>CM</sub>). CD4+ CD25<sup>high</sup> Treg expressed the chemokine receptor CCR6 in a considerable percentage, suggesting T cell homing to the vascular endothelium, lung and gut epithelial cells and brain. Treg phenotype was different than peripherally-induced Treg (pTreg) that revert from pro-inflammatory T cells under repeated stimulatory conditions, suggesting that SARS-CoV-2 spike-specific Treg differentiated from naïve T cells in tissues where the SARS-CoV-2 spike proteins were synthetized. Twenty two of 22 subjects studied responded to vaccination developing a spike-specific CD4+ T helper (Th)1 response, and 20 of 22 developing a spike-specific CD8+ cytotoxic T cells (CTL) response. However, in vaccine recipients the expansion of spike-specific pro-inflammatory T cells was less significant than the expansion of spike-specific Treg. Effector (T<sub>EM</sub>) and central memory (T<sub>CM</sub>) Treg were numerous as early as after two vaccine doses, with no significant differences following additional vaccine boosts. In co-culture experiments under stimulatory conditions, Treg regulated naïve T cell differentiation toward a pro-inflammatory phenotype and suppressed interferon (IFN)γ production by SARS-CoV-2-specific CD4 + Th1 cells.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SARS-CoV-2 spike-specific regulatory T cells (Treg) expand and develop memory in vaccine recipients suggesting a role for immune regulation in preventing severe symptoms in COVID-19.\",\"authors\":\"Alessandra Franco, Jaeyoon Song, Christina Chambers, Alessandro Sette, Alba Grifoni\",\"doi\":\"10.1080/08916934.2023.2259133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We enrolled healthy subjects that received 2 to 4 injections of mRNA-based vaccination to prevent COVID-19 months to a year from the last vaccine boost, and we found numerous SARS-CoV-2 spike-specific regulatory T cell (Treg) that developed T cell memory as effector memory T cells (T<sub>EM</sub>) and central memory T cells (T<sub>CM</sub>). CD4+ CD25<sup>high</sup> Treg expressed the chemokine receptor CCR6 in a considerable percentage, suggesting T cell homing to the vascular endothelium, lung and gut epithelial cells and brain. Treg phenotype was different than peripherally-induced Treg (pTreg) that revert from pro-inflammatory T cells under repeated stimulatory conditions, suggesting that SARS-CoV-2 spike-specific Treg differentiated from naïve T cells in tissues where the SARS-CoV-2 spike proteins were synthetized. Twenty two of 22 subjects studied responded to vaccination developing a spike-specific CD4+ T helper (Th)1 response, and 20 of 22 developing a spike-specific CD8+ cytotoxic T cells (CTL) response. However, in vaccine recipients the expansion of spike-specific pro-inflammatory T cells was less significant than the expansion of spike-specific Treg. Effector (T<sub>EM</sub>) and central memory (T<sub>CM</sub>) Treg were numerous as early as after two vaccine doses, with no significant differences following additional vaccine boosts. In co-culture experiments under stimulatory conditions, Treg regulated naïve T cell differentiation toward a pro-inflammatory phenotype and suppressed interferon (IFN)γ production by SARS-CoV-2-specific CD4 + Th1 cells.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08916934.2023.2259133\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08916934.2023.2259133","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
SARS-CoV-2 spike-specific regulatory T cells (Treg) expand and develop memory in vaccine recipients suggesting a role for immune regulation in preventing severe symptoms in COVID-19.
We enrolled healthy subjects that received 2 to 4 injections of mRNA-based vaccination to prevent COVID-19 months to a year from the last vaccine boost, and we found numerous SARS-CoV-2 spike-specific regulatory T cell (Treg) that developed T cell memory as effector memory T cells (TEM) and central memory T cells (TCM). CD4+ CD25high Treg expressed the chemokine receptor CCR6 in a considerable percentage, suggesting T cell homing to the vascular endothelium, lung and gut epithelial cells and brain. Treg phenotype was different than peripherally-induced Treg (pTreg) that revert from pro-inflammatory T cells under repeated stimulatory conditions, suggesting that SARS-CoV-2 spike-specific Treg differentiated from naïve T cells in tissues where the SARS-CoV-2 spike proteins were synthetized. Twenty two of 22 subjects studied responded to vaccination developing a spike-specific CD4+ T helper (Th)1 response, and 20 of 22 developing a spike-specific CD8+ cytotoxic T cells (CTL) response. However, in vaccine recipients the expansion of spike-specific pro-inflammatory T cells was less significant than the expansion of spike-specific Treg. Effector (TEM) and central memory (TCM) Treg were numerous as early as after two vaccine doses, with no significant differences following additional vaccine boosts. In co-culture experiments under stimulatory conditions, Treg regulated naïve T cell differentiation toward a pro-inflammatory phenotype and suppressed interferon (IFN)γ production by SARS-CoV-2-specific CD4 + Th1 cells.