Bingjie Hu, Kai Huang, Bijun Tang, Zhendong Lei, Zeming Wang, Huazhang Guo, Cheng Lian, Zheng Liu, Liang Wang
{"title":"石墨烯量子点介导的原子层半导体析氢电催化剂。","authors":"Bingjie Hu, Kai Huang, Bijun Tang, Zhendong Lei, Zeming Wang, Huazhang Guo, Cheng Lian, Zheng Liu, Liang Wang","doi":"10.1007/s40820-023-01182-7","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n <ul>\n <li>\n <p>The functional groups on graphene quantum dots (GQDs) for boosting the formation of MoS<sub>2</sub> nanosheets via theoretical calculations were predicted.</p>\n </li>\n <li>\n <p>Near atom-layer-QD@SO<sub>3</sub> with about 2 nm were synthesized using a functionalized GQD-induced in-situ bottom-up approach.</p>\n </li>\n <li>\n <p>Mechanistic insight on the role of functionalized GQDs was elaborated, namely, electron-withdrawing group functionalized GQDs facilitate the formation of nanosheet architectures of MoS<sub>2</sub> compared to electron-donating group.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":31.6000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539274/pdf/","citationCount":"0","resultStr":"{\"title\":\"Graphene Quantum Dot-Mediated Atom-Layer Semiconductor Electrocatalyst for Hydrogen Evolution\",\"authors\":\"Bingjie Hu, Kai Huang, Bijun Tang, Zhendong Lei, Zeming Wang, Huazhang Guo, Cheng Lian, Zheng Liu, Liang Wang\",\"doi\":\"10.1007/s40820-023-01182-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Highlights</h2><div>\\n \\n <ul>\\n <li>\\n <p>The functional groups on graphene quantum dots (GQDs) for boosting the formation of MoS<sub>2</sub> nanosheets via theoretical calculations were predicted.</p>\\n </li>\\n <li>\\n <p>Near atom-layer-QD@SO<sub>3</sub> with about 2 nm were synthesized using a functionalized GQD-induced in-situ bottom-up approach.</p>\\n </li>\\n <li>\\n <p>Mechanistic insight on the role of functionalized GQDs was elaborated, namely, electron-withdrawing group functionalized GQDs facilitate the formation of nanosheet architectures of MoS<sub>2</sub> compared to electron-donating group.</p>\\n </li>\\n </ul>\\n </div></div>\",\"PeriodicalId\":48779,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539274/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-023-01182-7\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-023-01182-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Graphene Quantum Dot-Mediated Atom-Layer Semiconductor Electrocatalyst for Hydrogen Evolution
Highlights
The functional groups on graphene quantum dots (GQDs) for boosting the formation of MoS2 nanosheets via theoretical calculations were predicted.
Near atom-layer-QD@SO3 with about 2 nm were synthesized using a functionalized GQD-induced in-situ bottom-up approach.
Mechanistic insight on the role of functionalized GQDs was elaborated, namely, electron-withdrawing group functionalized GQDs facilitate the formation of nanosheet architectures of MoS2 compared to electron-donating group.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary and open-access journal that focus on science, experiments, engineering, technologies and applications of nano- or microscale structure and system in physics, chemistry, biology, material science, pharmacy and their expanding interfaces with at least one dimension ranging from a few sub-nanometers to a few hundreds of micrometers. Especially, emphasize the bottom-up approach in the length scale from nano to micro since the key for nanotechnology to reach industrial applications is to assemble, to modify, and to control nanostructure in micro scale. The aim is to provide a publishing platform crossing the boundaries, from nano to micro, and from science to technologies.