石墨烯量子点介导的原子层半导体析氢电催化剂。

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bingjie Hu, Kai Huang, Bijun Tang, Zhendong Lei, Zeming Wang, Huazhang Guo, Cheng Lian, Zheng Liu, Liang Wang
{"title":"石墨烯量子点介导的原子层半导体析氢电催化剂。","authors":"Bingjie Hu,&nbsp;Kai Huang,&nbsp;Bijun Tang,&nbsp;Zhendong Lei,&nbsp;Zeming Wang,&nbsp;Huazhang Guo,&nbsp;Cheng Lian,&nbsp;Zheng Liu,&nbsp;Liang Wang","doi":"10.1007/s40820-023-01182-7","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n <ul>\n <li>\n <p>The functional groups on graphene quantum dots (GQDs) for boosting the formation of MoS<sub>2</sub> nanosheets via theoretical calculations were predicted.</p>\n </li>\n <li>\n <p>Near atom-layer-QD@SO<sub>3</sub> with about 2 nm were synthesized using a functionalized GQD-induced in-situ bottom-up approach.</p>\n </li>\n <li>\n <p>Mechanistic insight on the role of functionalized GQDs was elaborated, namely, electron-withdrawing group functionalized GQDs facilitate the formation of nanosheet architectures of MoS<sub>2</sub> compared to electron-donating group.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":31.6000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539274/pdf/","citationCount":"0","resultStr":"{\"title\":\"Graphene Quantum Dot-Mediated Atom-Layer Semiconductor Electrocatalyst for Hydrogen Evolution\",\"authors\":\"Bingjie Hu,&nbsp;Kai Huang,&nbsp;Bijun Tang,&nbsp;Zhendong Lei,&nbsp;Zeming Wang,&nbsp;Huazhang Guo,&nbsp;Cheng Lian,&nbsp;Zheng Liu,&nbsp;Liang Wang\",\"doi\":\"10.1007/s40820-023-01182-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Highlights</h2><div>\\n \\n <ul>\\n <li>\\n <p>The functional groups on graphene quantum dots (GQDs) for boosting the formation of MoS<sub>2</sub> nanosheets via theoretical calculations were predicted.</p>\\n </li>\\n <li>\\n <p>Near atom-layer-QD@SO<sub>3</sub> with about 2 nm were synthesized using a functionalized GQD-induced in-situ bottom-up approach.</p>\\n </li>\\n <li>\\n <p>Mechanistic insight on the role of functionalized GQDs was elaborated, namely, electron-withdrawing group functionalized GQDs facilitate the formation of nanosheet architectures of MoS<sub>2</sub> compared to electron-donating group.</p>\\n </li>\\n </ul>\\n </div></div>\",\"PeriodicalId\":48779,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539274/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-023-01182-7\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-023-01182-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

半导体2H相二硫化钼(2H-MoS2)的析氢反应性能是实现其全部潜在应用的重要障碍。在这里,我们利用理论计算来预测可能的功能化石墨烯量子点(GQDs),它可以增强大块MoS2的HER活性。随后,我们设计了一种功能化GQD诱导的原位自下而上的策略,通过调节吸电子/给电子官能团的浓度来制备由GQDs介导的近原子层2H-MoS2纳米片(ALQD)。实验结果表明,在ALQD的合成过程中引入一系列功能化GQD起着至关重要的作用。值得注意的是,GQD上吸电子官能团的浓度和强度越高,所得到的ALQD就越薄和越活性。值得注意的是,合成的近原子层ALQD-SO3表现出显著改善的HER性能。我们的GQD诱导策略为扩大MoS2的催化应用提供了一种简单有效的方法。此外,它在开发其他过渡金属二硫族化合物材料中的纳米片方面具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Graphene Quantum Dot-Mediated Atom-Layer Semiconductor Electrocatalyst for Hydrogen Evolution

Graphene Quantum Dot-Mediated Atom-Layer Semiconductor Electrocatalyst for Hydrogen Evolution

Graphene Quantum Dot-Mediated Atom-Layer Semiconductor Electrocatalyst for Hydrogen Evolution

Graphene Quantum Dot-Mediated Atom-Layer Semiconductor Electrocatalyst for Hydrogen Evolution

Highlights

  • The functional groups on graphene quantum dots (GQDs) for boosting the formation of MoS2 nanosheets via theoretical calculations were predicted.

  • Near atom-layer-QD@SO3 with about 2 nm were synthesized using a functionalized GQD-induced in-situ bottom-up approach.

  • Mechanistic insight on the role of functionalized GQDs was elaborated, namely, electron-withdrawing group functionalized GQDs facilitate the formation of nanosheet architectures of MoS2 compared to electron-donating group.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
42.40
自引率
4.90%
发文量
715
审稿时长
13 weeks
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary and open-access journal that focus on science, experiments, engineering, technologies and applications of nano- or microscale structure and system in physics, chemistry, biology, material science, pharmacy and their expanding interfaces with at least one dimension ranging from a few sub-nanometers to a few hundreds of micrometers. Especially, emphasize the bottom-up approach in the length scale from nano to micro since the key for nanotechnology to reach industrial applications is to assemble, to modify, and to control nanostructure in micro scale. The aim is to provide a publishing platform crossing the boundaries, from nano to micro, and from science to technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信