等离子体通道中的激光韦克菲尔德加速

IF 0.6 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
M. S. Dorozhkina, K. V. Baluev, D. D. Kutergin, I. K. Lotov, V. A. Minakov, R. I. Spitsyn, P. V. Tuev, K. V. Lotov
{"title":"等离子体通道中的激光韦克菲尔德加速","authors":"M. S. Dorozhkina,&nbsp;K. V. Baluev,&nbsp;D. D. Kutergin,&nbsp;I. K. Lotov,&nbsp;V. A. Minakov,&nbsp;R. I. Spitsyn,&nbsp;P. V. Tuev,&nbsp;K. V. Lotov","doi":"10.3103/S1068335623180057","DOIUrl":null,"url":null,"abstract":"<p>It is shown by numerical simulations that, if a laser pulse from the eXawatt Center for Extreme Light Studies (Sarov) is used as a driver for a laser wakefield accelerator, an electron bunch with a charge of 50 pC can be accelerated to energy of 100 GeV with an energy spread of less than 1%. To this end, it is necessary to form a plasma channel 70 m long with a characteristic radius of 200 μm and a plasma density of 3 × 10<sup>15</sup> cm<sup>–3</sup> on the axis. In a denser plasma, the acceleration rate is higher, but the acceleration length and the resulting energy are smaller. The accelerator parameters can be numerically optimized using a quasistatic model describing the laser pulse in terms of its envelope, which reduces the computation time by several orders of magnitude as compared to complete models.</p>","PeriodicalId":503,"journal":{"name":"Bulletin of the Lebedev Physics Institute","volume":"50 6","pages":"S715 - S723"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser Wakefield Acceleration in a Plasma Channel\",\"authors\":\"M. S. Dorozhkina,&nbsp;K. V. Baluev,&nbsp;D. D. Kutergin,&nbsp;I. K. Lotov,&nbsp;V. A. Minakov,&nbsp;R. I. Spitsyn,&nbsp;P. V. Tuev,&nbsp;K. V. Lotov\",\"doi\":\"10.3103/S1068335623180057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is shown by numerical simulations that, if a laser pulse from the eXawatt Center for Extreme Light Studies (Sarov) is used as a driver for a laser wakefield accelerator, an electron bunch with a charge of 50 pC can be accelerated to energy of 100 GeV with an energy spread of less than 1%. To this end, it is necessary to form a plasma channel 70 m long with a characteristic radius of 200 μm and a plasma density of 3 × 10<sup>15</sup> cm<sup>–3</sup> on the axis. In a denser plasma, the acceleration rate is higher, but the acceleration length and the resulting energy are smaller. The accelerator parameters can be numerically optimized using a quasistatic model describing the laser pulse in terms of its envelope, which reduces the computation time by several orders of magnitude as compared to complete models.</p>\",\"PeriodicalId\":503,\"journal\":{\"name\":\"Bulletin of the Lebedev Physics Institute\",\"volume\":\"50 6\",\"pages\":\"S715 - S723\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Lebedev Physics Institute\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068335623180057\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Lebedev Physics Institute","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S1068335623180057","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

数值模拟表明,如果使用来自eXawatt极端光研究中心(Sarov)的激光脉冲作为激光尾流场加速器的驱动器,则电荷为50pC的电子束可以加速到100GeV的能量,能量扩散小于1%。为此,有必要在轴上形成一个70 m长、特征半径为200μm、等离子体密度为3×1015 cm–3的等离子体通道。在密度更大的等离子体中,加速率更高,但加速长度和由此产生的能量更小。加速器参数可以使用准静态模型进行数值优化,该模型根据激光脉冲的包络来描述激光脉冲,与完整的模型相比,这将计算时间减少了几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Laser Wakefield Acceleration in a Plasma Channel

Laser Wakefield Acceleration in a Plasma Channel

It is shown by numerical simulations that, if a laser pulse from the eXawatt Center for Extreme Light Studies (Sarov) is used as a driver for a laser wakefield accelerator, an electron bunch with a charge of 50 pC can be accelerated to energy of 100 GeV with an energy spread of less than 1%. To this end, it is necessary to form a plasma channel 70 m long with a characteristic radius of 200 μm and a plasma density of 3 × 1015 cm–3 on the axis. In a denser plasma, the acceleration rate is higher, but the acceleration length and the resulting energy are smaller. The accelerator parameters can be numerically optimized using a quasistatic model describing the laser pulse in terms of its envelope, which reduces the computation time by several orders of magnitude as compared to complete models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of the Lebedev Physics Institute
Bulletin of the Lebedev Physics Institute PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.70
自引率
25.00%
发文量
41
审稿时长
6-12 weeks
期刊介绍: Bulletin of the Lebedev Physics Institute is an international peer reviewed journal that publishes results of new original experimental and theoretical studies on all topics of physics: theoretical physics; atomic and molecular physics; nuclear physics; optics; lasers; condensed matter; physics of solids; biophysics, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信