2022年1月15日汤加火山灾难性爆发时地磁场的海湾状变化

IF 0.5 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS
L. F. Chernogor, M. Yu. Holub
{"title":"2022年1月15日汤加火山灾难性爆发时地磁场的海湾状变化","authors":"L. F. Chernogor,&nbsp;M. Yu. Holub","doi":"10.3103/S0884591323050033","DOIUrl":null,"url":null,"abstract":"<p>The Tonga volcano is among the five most powerful volcanoes in the world. The explosion of the Tonga volcano on January 15, 2022, was unique. It has led to disturbances in the lithosphere, World Ocean, atmosphere, ionosphere, magnetosphere, and all geophysical fields. A number of studies have been devoted to the disturbance of the Earth’s magnetic field. The transport of magnetic field disturbances by atmospheric gravity waves and tsunamis, disturbances in magnetically conjugated regions due to acoustic resonance, the effect on the equatorial electrojet, etc., have been studied. This is far from the end of the variety of magnetic effects of the Tonga volcano. This study is aimed at describing the results of the analysis of global bay disturbances in the geomagnetic field observed after the Tonga volcano explosion on January 15, 2022. The results of measuring the temporal variations in the level of the <i>X</i>, <i>Y</i>, and <i>Z</i> components by the INTERMAGNET world network of stations are used as initial data. The analysis of the magnetic data is preceded by an analysis of space weather conditions. A preliminary analysis of temporal variations in the level of the <i>X</i>-, <i>Y</i>-, and <i>Z</i>-components indicates that these variations on the reference days are smoother than on January 15, 2022. An analysis of the temporal variations in the level of the <i>X</i>-, <i>Y</i>-, and <i>Z</i>-components of the geomagnetic field and a statistical analysis of the disturbance parameters have shown the following. Bay disturbances of all components of the geomagnetic field are observed with a time delay that varies depending on the distance to the volcano from several tens of minutes to 100–200 min. The magnitude of the effect varies from approximately 10 to approximately 60 nT. The largest disturbances occur in the <i>Y</i> component. The delay time and duration of disturbances increase with an increase in the distance from the volcano, while their amplitude, on the contrary, decreases. The speed of propagation of bay disturbances is close to the speed of the blast wave. Bay disturbances are weakly expressed or completely absent on the night side of the planet. It is substantiated that bay disturbances are closely related to the occurrence of an ionospheric hole under the action of a blast wave from the volcano. The results of estimates of bay disturbances are in good agreement with the observation results.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"39 5","pages":"247 - 260"},"PeriodicalIF":0.5000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bay-Shaped Variations in the Geomagnetic Field that Accompanied the Catastrophic Explosion of the Tonga Volcano on January 15, 2022\",\"authors\":\"L. F. Chernogor,&nbsp;M. Yu. Holub\",\"doi\":\"10.3103/S0884591323050033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Tonga volcano is among the five most powerful volcanoes in the world. The explosion of the Tonga volcano on January 15, 2022, was unique. It has led to disturbances in the lithosphere, World Ocean, atmosphere, ionosphere, magnetosphere, and all geophysical fields. A number of studies have been devoted to the disturbance of the Earth’s magnetic field. The transport of magnetic field disturbances by atmospheric gravity waves and tsunamis, disturbances in magnetically conjugated regions due to acoustic resonance, the effect on the equatorial electrojet, etc., have been studied. This is far from the end of the variety of magnetic effects of the Tonga volcano. This study is aimed at describing the results of the analysis of global bay disturbances in the geomagnetic field observed after the Tonga volcano explosion on January 15, 2022. The results of measuring the temporal variations in the level of the <i>X</i>, <i>Y</i>, and <i>Z</i> components by the INTERMAGNET world network of stations are used as initial data. The analysis of the magnetic data is preceded by an analysis of space weather conditions. A preliminary analysis of temporal variations in the level of the <i>X</i>-, <i>Y</i>-, and <i>Z</i>-components indicates that these variations on the reference days are smoother than on January 15, 2022. An analysis of the temporal variations in the level of the <i>X</i>-, <i>Y</i>-, and <i>Z</i>-components of the geomagnetic field and a statistical analysis of the disturbance parameters have shown the following. Bay disturbances of all components of the geomagnetic field are observed with a time delay that varies depending on the distance to the volcano from several tens of minutes to 100–200 min. The magnitude of the effect varies from approximately 10 to approximately 60 nT. The largest disturbances occur in the <i>Y</i> component. The delay time and duration of disturbances increase with an increase in the distance from the volcano, while their amplitude, on the contrary, decreases. The speed of propagation of bay disturbances is close to the speed of the blast wave. Bay disturbances are weakly expressed or completely absent on the night side of the planet. It is substantiated that bay disturbances are closely related to the occurrence of an ionospheric hole under the action of a blast wave from the volcano. The results of estimates of bay disturbances are in good agreement with the observation results.</p>\",\"PeriodicalId\":681,\"journal\":{\"name\":\"Kinematics and Physics of Celestial Bodies\",\"volume\":\"39 5\",\"pages\":\"247 - 260\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinematics and Physics of Celestial Bodies\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0884591323050033\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinematics and Physics of Celestial Bodies","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0884591323050033","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

汤加火山是世界上最强大的五座火山之一。2022年1月15日汤加火山的爆炸是独一无二的。它导致了岩石圈、世界海洋、大气层、电离层、磁层和所有地球物理场的扰动。许多研究都致力于研究地球磁场的扰动。研究了大气重力波和海啸对磁场扰动的传输、声共振对磁共轭区域的扰动、对赤道电射流的影响等。汤加火山的各种磁效应远未结束。本研究旨在描述2022年1月15日汤加火山爆发后观测到的地磁场中全球海湾扰动的分析结果。INTERMAGNET世界台站网络测量X、Y和Z分量水平的时间变化的结果被用作初始数据。在对磁数据进行分析之前,要对空间天气条件进行分析。对X、Y和Z分量水平的时间变化的初步分析表明,参考日的这些变化比2022年1月15日更平稳。对地磁场X、Y和Z分量水平的时间变化的分析以及对扰动参数的统计分析显示如下。观测到地磁场所有分量的海湾扰动,其时间延迟随到火山的距离而变化,从几十分钟到100–200分钟不等。影响的大小从大约10到大约60 nT不等。最大的扰动发生在Y分量。扰动的延迟时间和持续时间随着离火山距离的增加而增加,而其振幅则相反地减小。海湾扰动的传播速度接近爆炸波的速度。海湾扰动在行星的夜晚一侧表现微弱或完全不存在。研究表明,海湾扰动与火山爆发波作用下电离层空洞的产生密切相关。海湾扰动的估计结果与观测结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bay-Shaped Variations in the Geomagnetic Field that Accompanied the Catastrophic Explosion of the Tonga Volcano on January 15, 2022

Bay-Shaped Variations in the Geomagnetic Field that Accompanied the Catastrophic Explosion of the Tonga Volcano on January 15, 2022

The Tonga volcano is among the five most powerful volcanoes in the world. The explosion of the Tonga volcano on January 15, 2022, was unique. It has led to disturbances in the lithosphere, World Ocean, atmosphere, ionosphere, magnetosphere, and all geophysical fields. A number of studies have been devoted to the disturbance of the Earth’s magnetic field. The transport of magnetic field disturbances by atmospheric gravity waves and tsunamis, disturbances in magnetically conjugated regions due to acoustic resonance, the effect on the equatorial electrojet, etc., have been studied. This is far from the end of the variety of magnetic effects of the Tonga volcano. This study is aimed at describing the results of the analysis of global bay disturbances in the geomagnetic field observed after the Tonga volcano explosion on January 15, 2022. The results of measuring the temporal variations in the level of the X, Y, and Z components by the INTERMAGNET world network of stations are used as initial data. The analysis of the magnetic data is preceded by an analysis of space weather conditions. A preliminary analysis of temporal variations in the level of the X-, Y-, and Z-components indicates that these variations on the reference days are smoother than on January 15, 2022. An analysis of the temporal variations in the level of the X-, Y-, and Z-components of the geomagnetic field and a statistical analysis of the disturbance parameters have shown the following. Bay disturbances of all components of the geomagnetic field are observed with a time delay that varies depending on the distance to the volcano from several tens of minutes to 100–200 min. The magnitude of the effect varies from approximately 10 to approximately 60 nT. The largest disturbances occur in the Y component. The delay time and duration of disturbances increase with an increase in the distance from the volcano, while their amplitude, on the contrary, decreases. The speed of propagation of bay disturbances is close to the speed of the blast wave. Bay disturbances are weakly expressed or completely absent on the night side of the planet. It is substantiated that bay disturbances are closely related to the occurrence of an ionospheric hole under the action of a blast wave from the volcano. The results of estimates of bay disturbances are in good agreement with the observation results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kinematics and Physics of Celestial Bodies
Kinematics and Physics of Celestial Bodies ASTRONOMY & ASTROPHYSICS-
CiteScore
0.90
自引率
40.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Kinematics and Physics of Celestial Bodies is an international peer reviewed journal that publishes original regular and review papers on positional and theoretical astronomy, Earth’s rotation and geodynamics, dynamics and physics of bodies of the Solar System, solar physics, physics of stars and interstellar medium, structure and dynamics of the Galaxy, extragalactic astronomy, atmospheric optics and astronomical climate, instruments and devices, and mathematical processing of astronomical information. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信