A. V. Parshina, E. Yu. Safronova, A. S. Yelnikova, N. Stretton, O. V. Bobreshova
{"title":"反离子性质对长短侧链全氟磺酸膜性能的影响","authors":"A. V. Parshina, E. Yu. Safronova, A. S. Yelnikova, N. Stretton, O. V. Bobreshova","doi":"10.1134/S2517751623050062","DOIUrl":null,"url":null,"abstract":"<p>The paper presents the results of a study of water uptake, ionic conductivity, and Donnan potential in systems with perfluorosulfonic acid membranes in the H<sup>+</sup>, Li<sup>+</sup>, Na<sup>+</sup>, and K<sup>+</sup> ionic forms and solutions of inorganic electrolytes. The properties of commercial membranes Aquivion E87-05S and Nafion 212, as well as membranes obtained from dispersions of Nafion 212 in solvents of various nature (<i>N</i>,<i>N</i>-dimethylformamide, 1-methyl-2-pyrrolidone, mixtures of isopropyl alcohol with water in a volume ratio of 80–20) have been studied. The effect of the number of functional groups, the length of the side chain of polymer macromolecules, and the morphology of the polymer in membranes on their equilibrium and transport properties depending on the nature of the counterion has been determined. The effect of relaxation and electrophoretic factors on the transfer of alkali metal ions through the system of pores and channels of perfluorosulfonic acid membranes is discussed. The slope of the concentration dependences of the Donnan potential for all highly hydrated membranes in the H<sup>+</sup> form has been found to be close to the Nernstian one, while the selectivity to alkali metal ions increases for membranes with the highest ion exchange capacity or the lowest amount of sorbed water and diffusion permeability due to the exclusion of co-ions from the membrane phase.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"5 5","pages":"323 - 332"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the Nature of Counterion on Properties of Perfluorosulfonic Acid Membranes with Long and Short Side Chains\",\"authors\":\"A. V. Parshina, E. Yu. Safronova, A. S. Yelnikova, N. Stretton, O. V. Bobreshova\",\"doi\":\"10.1134/S2517751623050062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper presents the results of a study of water uptake, ionic conductivity, and Donnan potential in systems with perfluorosulfonic acid membranes in the H<sup>+</sup>, Li<sup>+</sup>, Na<sup>+</sup>, and K<sup>+</sup> ionic forms and solutions of inorganic electrolytes. The properties of commercial membranes Aquivion E87-05S and Nafion 212, as well as membranes obtained from dispersions of Nafion 212 in solvents of various nature (<i>N</i>,<i>N</i>-dimethylformamide, 1-methyl-2-pyrrolidone, mixtures of isopropyl alcohol with water in a volume ratio of 80–20) have been studied. The effect of the number of functional groups, the length of the side chain of polymer macromolecules, and the morphology of the polymer in membranes on their equilibrium and transport properties depending on the nature of the counterion has been determined. The effect of relaxation and electrophoretic factors on the transfer of alkali metal ions through the system of pores and channels of perfluorosulfonic acid membranes is discussed. The slope of the concentration dependences of the Donnan potential for all highly hydrated membranes in the H<sup>+</sup> form has been found to be close to the Nernstian one, while the selectivity to alkali metal ions increases for membranes with the highest ion exchange capacity or the lowest amount of sorbed water and diffusion permeability due to the exclusion of co-ions from the membrane phase.</p>\",\"PeriodicalId\":700,\"journal\":{\"name\":\"Membranes and Membrane Technologies\",\"volume\":\"5 5\",\"pages\":\"323 - 332\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes and Membrane Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2517751623050062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751623050062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Effect of the Nature of Counterion on Properties of Perfluorosulfonic Acid Membranes with Long and Short Side Chains
The paper presents the results of a study of water uptake, ionic conductivity, and Donnan potential in systems with perfluorosulfonic acid membranes in the H+, Li+, Na+, and K+ ionic forms and solutions of inorganic electrolytes. The properties of commercial membranes Aquivion E87-05S and Nafion 212, as well as membranes obtained from dispersions of Nafion 212 in solvents of various nature (N,N-dimethylformamide, 1-methyl-2-pyrrolidone, mixtures of isopropyl alcohol with water in a volume ratio of 80–20) have been studied. The effect of the number of functional groups, the length of the side chain of polymer macromolecules, and the morphology of the polymer in membranes on their equilibrium and transport properties depending on the nature of the counterion has been determined. The effect of relaxation and electrophoretic factors on the transfer of alkali metal ions through the system of pores and channels of perfluorosulfonic acid membranes is discussed. The slope of the concentration dependences of the Donnan potential for all highly hydrated membranes in the H+ form has been found to be close to the Nernstian one, while the selectivity to alkali metal ions increases for membranes with the highest ion exchange capacity or the lowest amount of sorbed water and diffusion permeability due to the exclusion of co-ions from the membrane phase.
期刊介绍:
The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.