Xiaolong Huang, Xin Liao, Yong Pu, Dachuan Zhu, Qun Yan
{"title":"用预合成的B-Bi-O玻璃料烧结TiO2-Nb2O5-ZnO压敏电阻提高其电学性能","authors":"Xiaolong Huang, Xin Liao, Yong Pu, Dachuan Zhu, Qun Yan","doi":"10.1007/s10832-023-00312-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, H<sub>3</sub>BO<sub>3</sub> and Bi<sub>2</sub>O<sub>3</sub> with the ratio 3:2 were melted at 750 °C and then quenched in water to produce B-Bi-O frit, which was sintered and co-doped with TiO<sub>2</sub>-0.60Nb<sub>2</sub>O<sub>5</sub>-0.50ZnO varistor ceramics. It is found that B-Bi-O frit can reduce the sintering temperature and improve the electrical properties of TiO<sub>2</sub> ceramics. The best comprehensive electrical properties with the nonlinear coefficient up to 8.9, the breakdown voltage down to 4.92 V/mm, the relative dielectric constant of 4.47*10<sup>5</sup> and the leakage current of 0.102 mA are achieved by sintering the ceramics doped with 3 wt% B-Bi-O frit at 1400 °C. XRD analysis shows that B-Bi-O frit is an amorphous phase, and no second phase can be found in ceramics after the frit is doped. SEM morphologies display that B-Bi-O frit is beneficial to decrease the porosity while increase the grain size, and EDS mapping further presents no elements segregate on the grain boundary. XPS spectra demonstrate the coexistence of Ti<sup>3+</sup> ions, Ti<sup>4+</sup> ions and oxygen vacancies in TiO<sub>2</sub> ceramics. As a result, it can be concluded that the enhancement of the electrical properties of TiO<sub>2</sub> ceramics is mainly attributed to the following aspects: on the one hand, B-Bi-O frit helps to produce liquid phase sintering, which would reduce the porosity while increase grain size and promote solid solution of Nb<sub>2</sub>O<sub>5</sub> and ZnO in TiO<sub>2</sub> ceramic. On the other hand, B and Bi elements can also act as acceptor dopants in TiO<sub>2</sub> ceramic to further promote grain semi-conductivity and increase grain boundary barrier height.</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"51 1","pages":"1 - 11"},"PeriodicalIF":1.7000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10832-023-00312-2.pdf","citationCount":"0","resultStr":"{\"title\":\"The enhanced electrical properties of TiO2-Nb2O5-ZnO varistor by sintering with the pre-synthesized B-Bi-O frit\",\"authors\":\"Xiaolong Huang, Xin Liao, Yong Pu, Dachuan Zhu, Qun Yan\",\"doi\":\"10.1007/s10832-023-00312-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, H<sub>3</sub>BO<sub>3</sub> and Bi<sub>2</sub>O<sub>3</sub> with the ratio 3:2 were melted at 750 °C and then quenched in water to produce B-Bi-O frit, which was sintered and co-doped with TiO<sub>2</sub>-0.60Nb<sub>2</sub>O<sub>5</sub>-0.50ZnO varistor ceramics. It is found that B-Bi-O frit can reduce the sintering temperature and improve the electrical properties of TiO<sub>2</sub> ceramics. The best comprehensive electrical properties with the nonlinear coefficient up to 8.9, the breakdown voltage down to 4.92 V/mm, the relative dielectric constant of 4.47*10<sup>5</sup> and the leakage current of 0.102 mA are achieved by sintering the ceramics doped with 3 wt% B-Bi-O frit at 1400 °C. XRD analysis shows that B-Bi-O frit is an amorphous phase, and no second phase can be found in ceramics after the frit is doped. SEM morphologies display that B-Bi-O frit is beneficial to decrease the porosity while increase the grain size, and EDS mapping further presents no elements segregate on the grain boundary. XPS spectra demonstrate the coexistence of Ti<sup>3+</sup> ions, Ti<sup>4+</sup> ions and oxygen vacancies in TiO<sub>2</sub> ceramics. As a result, it can be concluded that the enhancement of the electrical properties of TiO<sub>2</sub> ceramics is mainly attributed to the following aspects: on the one hand, B-Bi-O frit helps to produce liquid phase sintering, which would reduce the porosity while increase grain size and promote solid solution of Nb<sub>2</sub>O<sub>5</sub> and ZnO in TiO<sub>2</sub> ceramic. On the other hand, B and Bi elements can also act as acceptor dopants in TiO<sub>2</sub> ceramic to further promote grain semi-conductivity and increase grain boundary barrier height.</p></div>\",\"PeriodicalId\":625,\"journal\":{\"name\":\"Journal of Electroceramics\",\"volume\":\"51 1\",\"pages\":\"1 - 11\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10832-023-00312-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10832-023-00312-2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10832-023-00312-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
The enhanced electrical properties of TiO2-Nb2O5-ZnO varistor by sintering with the pre-synthesized B-Bi-O frit
In this work, H3BO3 and Bi2O3 with the ratio 3:2 were melted at 750 °C and then quenched in water to produce B-Bi-O frit, which was sintered and co-doped with TiO2-0.60Nb2O5-0.50ZnO varistor ceramics. It is found that B-Bi-O frit can reduce the sintering temperature and improve the electrical properties of TiO2 ceramics. The best comprehensive electrical properties with the nonlinear coefficient up to 8.9, the breakdown voltage down to 4.92 V/mm, the relative dielectric constant of 4.47*105 and the leakage current of 0.102 mA are achieved by sintering the ceramics doped with 3 wt% B-Bi-O frit at 1400 °C. XRD analysis shows that B-Bi-O frit is an amorphous phase, and no second phase can be found in ceramics after the frit is doped. SEM morphologies display that B-Bi-O frit is beneficial to decrease the porosity while increase the grain size, and EDS mapping further presents no elements segregate on the grain boundary. XPS spectra demonstrate the coexistence of Ti3+ ions, Ti4+ ions and oxygen vacancies in TiO2 ceramics. As a result, it can be concluded that the enhancement of the electrical properties of TiO2 ceramics is mainly attributed to the following aspects: on the one hand, B-Bi-O frit helps to produce liquid phase sintering, which would reduce the porosity while increase grain size and promote solid solution of Nb2O5 and ZnO in TiO2 ceramic. On the other hand, B and Bi elements can also act as acceptor dopants in TiO2 ceramic to further promote grain semi-conductivity and increase grain boundary barrier height.
期刊介绍:
While ceramics have traditionally been admired for their mechanical, chemical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Electroceramics benefit greatly from their versatility in properties including:
-insulating to metallic and fast ion conductivity
-piezo-, ferro-, and pyro-electricity
-electro- and nonlinear optical properties
-feromagnetism.
When combined with thermal, mechanical, and chemical stability, these properties often render them the materials of choice.
The Journal of Electroceramics is dedicated to providing a forum of discussion cutting across issues in electrical, optical, and magnetic ceramics. Driven by the need for miniaturization, cost, and enhanced functionality, the field of electroceramics is growing rapidly in many new directions. The Journal encourages discussions of resultant trends concerning silicon-electroceramic integration, nanotechnology, ceramic-polymer composites, grain boundary and defect engineering, etc.