{"title":"分子光电离中阿秒电子动力学建模研究进展","authors":"Marco Ruberti, Vitali Averbukh","doi":"10.1002/wcms.1673","DOIUrl":null,"url":null,"abstract":"<p>The dramatic progress of experimental attosecond science has called for the development of new theoretical and computational tools capable of accurately model the correlated electron dynamics triggered by attosecond molecular photoionization. We describe the nature and the main outcome of this development, with particular focus on the B-spline ADC and RCS-ADC ab initio methods.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"13 5","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1673","citationCount":"2","resultStr":"{\"title\":\"Advances in modeling attosecond electron dynamics in molecular photoionization\",\"authors\":\"Marco Ruberti, Vitali Averbukh\",\"doi\":\"10.1002/wcms.1673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The dramatic progress of experimental attosecond science has called for the development of new theoretical and computational tools capable of accurately model the correlated electron dynamics triggered by attosecond molecular photoionization. We describe the nature and the main outcome of this development, with particular focus on the B-spline ADC and RCS-ADC ab initio methods.</p><p>This article is categorized under:\\n </p>\",\"PeriodicalId\":236,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"volume\":\"13 5\",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1673\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1673\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1673","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Advances in modeling attosecond electron dynamics in molecular photoionization
The dramatic progress of experimental attosecond science has called for the development of new theoretical and computational tools capable of accurately model the correlated electron dynamics triggered by attosecond molecular photoionization. We describe the nature and the main outcome of this development, with particular focus on the B-spline ADC and RCS-ADC ab initio methods.
期刊介绍:
Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.