关于分幂代数的Kähler微分

IF 0.5 4区 数学
Ioannis Dokas
{"title":"关于分幂代数的Kähler微分","authors":"Ioannis Dokas","doi":"10.1007/s40062-023-00325-2","DOIUrl":null,"url":null,"abstract":"<div><p>The Quillen–Barr–Beck cohomology of augmented algebras with a system of divided powers is defined as the derived functor of Beck derivations. The main theorem of this paper states that the Kähler differentials of an augmented algebra with a system of divided powers in prime characteristic represents Beck derivations. We give a geometrical interpretation of this statement for the sheaf of relative differentials. As an application in the theory of modular Lie algebras we prove that any special derivation of a divided power algebra is a Beck derivation and we apply the theorem to Witt algebras.</p></div>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"18 2-3","pages":"153 - 176"},"PeriodicalIF":0.5000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40062-023-00325-2.pdf","citationCount":"0","resultStr":"{\"title\":\"On Kähler differentials of divided power algebras\",\"authors\":\"Ioannis Dokas\",\"doi\":\"10.1007/s40062-023-00325-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Quillen–Barr–Beck cohomology of augmented algebras with a system of divided powers is defined as the derived functor of Beck derivations. The main theorem of this paper states that the Kähler differentials of an augmented algebra with a system of divided powers in prime characteristic represents Beck derivations. We give a geometrical interpretation of this statement for the sheaf of relative differentials. As an application in the theory of modular Lie algebras we prove that any special derivation of a divided power algebra is a Beck derivation and we apply the theorem to Witt algebras.</p></div>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"18 2-3\",\"pages\":\"153 - 176\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40062-023-00325-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-023-00325-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-023-00325-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有幂分系统的增广代数的Quillen–Barr–Beck上同调被定义为Beck导子的导出函子。本文的主要定理指出,具有素数特征的幂分系统的增广代数的Kähler微分表示Beck导数。我们对相对微分系给出了这一表述的几何解释。作为模李代数理论的一个应用,我们证明了分幂代数的任何特殊导数都是Beck导数,并将该定理应用于Witt代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Kähler differentials of divided power algebras

The Quillen–Barr–Beck cohomology of augmented algebras with a system of divided powers is defined as the derived functor of Beck derivations. The main theorem of this paper states that the Kähler differentials of an augmented algebra with a system of divided powers in prime characteristic represents Beck derivations. We give a geometrical interpretation of this statement for the sheaf of relative differentials. As an application in the theory of modular Lie algebras we prove that any special derivation of a divided power algebra is a Beck derivation and we apply the theorem to Witt algebras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信