Muhammad Zeshan, Muhammad Suleman Waheed, Saad Ahmad Ishaq, Abubakar Siddique, Atta Ullah, El-Sayed M. Sherif, Mohd Zahid Ansari, Sajjad Ahmad Khan, Abdul Rauf Khan, Hafiz Muhammad Tahir Farid
{"title":"溶胶-凝胶法制备用于电磁界面屏蔽的尖晶石-铁氧体/聚苯胺复合材料","authors":"Muhammad Zeshan, Muhammad Suleman Waheed, Saad Ahmad Ishaq, Abubakar Siddique, Atta Ullah, El-Sayed M. Sherif, Mohd Zahid Ansari, Sajjad Ahmad Khan, Abdul Rauf Khan, Hafiz Muhammad Tahir Farid","doi":"10.1007/s11696-023-02956-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we examined the properties of conductive polymers and related composites that are typically used for EMI shielding owing of their magnetic and microwave properties. Ferrite/polymer (PANI) composites, which have magnetic properties, are a promising area of research for multifunctional materials. Specifically, we compared and contrasted the properties of PANI, gadolinium-substituted spinel ferrite, and their composites. In this research, we employed the sol–gel method to synthesize polyaniline and spinel ferrites. The nanocomposites were formed by combining the polyaniline and spinel ferrites. Various properties of these nanocomposites were analyzed using multiple characterization methods, including X-ray diffraction (XRD), a vibrating sample magnetometer (VSM), Direct current electrical resistivity and microwave. The X-ray diffraction pattern indicated the presence of a pure crystalline ferrite phase, with an average size of the crystallite approximately 40 nm. The ferromagnetic properties of the nanocomposites were demonstrated through the M-H loops. The microwave properties of materials, namely their capacity to reflect or deflect electromagnetic radiation in the appropriate frequency range, impact the effectiveness of EMI shielding for microwave applications.</p></div>","PeriodicalId":55265,"journal":{"name":"Chemical Papers","volume":"77 11","pages":"6533 - 6542"},"PeriodicalIF":2.1000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11696-023-02956-4.pdf","citationCount":"2","resultStr":"{\"title\":\"Sol–gel preparation of spinel ferrites/polyaniline composites for electromagnetic interface shielding\",\"authors\":\"Muhammad Zeshan, Muhammad Suleman Waheed, Saad Ahmad Ishaq, Abubakar Siddique, Atta Ullah, El-Sayed M. Sherif, Mohd Zahid Ansari, Sajjad Ahmad Khan, Abdul Rauf Khan, Hafiz Muhammad Tahir Farid\",\"doi\":\"10.1007/s11696-023-02956-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we examined the properties of conductive polymers and related composites that are typically used for EMI shielding owing of their magnetic and microwave properties. Ferrite/polymer (PANI) composites, which have magnetic properties, are a promising area of research for multifunctional materials. Specifically, we compared and contrasted the properties of PANI, gadolinium-substituted spinel ferrite, and their composites. In this research, we employed the sol–gel method to synthesize polyaniline and spinel ferrites. The nanocomposites were formed by combining the polyaniline and spinel ferrites. Various properties of these nanocomposites were analyzed using multiple characterization methods, including X-ray diffraction (XRD), a vibrating sample magnetometer (VSM), Direct current electrical resistivity and microwave. The X-ray diffraction pattern indicated the presence of a pure crystalline ferrite phase, with an average size of the crystallite approximately 40 nm. The ferromagnetic properties of the nanocomposites were demonstrated through the M-H loops. The microwave properties of materials, namely their capacity to reflect or deflect electromagnetic radiation in the appropriate frequency range, impact the effectiveness of EMI shielding for microwave applications.</p></div>\",\"PeriodicalId\":55265,\"journal\":{\"name\":\"Chemical Papers\",\"volume\":\"77 11\",\"pages\":\"6533 - 6542\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11696-023-02956-4.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Papers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11696-023-02956-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-023-02956-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Sol–gel preparation of spinel ferrites/polyaniline composites for electromagnetic interface shielding
In this study, we examined the properties of conductive polymers and related composites that are typically used for EMI shielding owing of their magnetic and microwave properties. Ferrite/polymer (PANI) composites, which have magnetic properties, are a promising area of research for multifunctional materials. Specifically, we compared and contrasted the properties of PANI, gadolinium-substituted spinel ferrite, and their composites. In this research, we employed the sol–gel method to synthesize polyaniline and spinel ferrites. The nanocomposites were formed by combining the polyaniline and spinel ferrites. Various properties of these nanocomposites were analyzed using multiple characterization methods, including X-ray diffraction (XRD), a vibrating sample magnetometer (VSM), Direct current electrical resistivity and microwave. The X-ray diffraction pattern indicated the presence of a pure crystalline ferrite phase, with an average size of the crystallite approximately 40 nm. The ferromagnetic properties of the nanocomposites were demonstrated through the M-H loops. The microwave properties of materials, namely their capacity to reflect or deflect electromagnetic radiation in the appropriate frequency range, impact the effectiveness of EMI shielding for microwave applications.
期刊介绍:
Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.