{"title":"天体生物学研究时代的酵母","authors":"Patrick Leo, Silvano Onofri","doi":"10.1007/s41745-023-00378-5","DOIUrl":null,"url":null,"abstract":"<div><p>Due to their extraordinary genetic and phenotypic plasticity, yeast and yeast-like fungi have been able to adapt and colonize a wide range of ecological niches. Pigmented and nonpigmented extremophilic yeasts have been discovered in areas on Earth characterized by physical and chemical conditions similar to those found in extraterrestrial environments. Thus, these \"simple\" eukaryotic life forms have evolved unique genetic, metabolic, and phenotypic characteristics for coping with extreme conditions, existing in both natural (polar continents, deep sea, stratosphere, etc.) and manmade environments such as the cleanrooms where spacecraft are built. This makes them ideal test organisms for astrobiology research. All of the results from the numerous experiments in which they have been tested are helping us to understand what to look for and where in space missions searching for signs of present and/or past life. Meanwhile, we must continue to explore the most inhospitable places on Earth to discover new promising extremophiles that could be used as model organisms for astrobiology research.</p></div>","PeriodicalId":675,"journal":{"name":"Journal of the Indian Institute of Science","volume":"103 3","pages":"699 - 709"},"PeriodicalIF":1.8000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41745-023-00378-5.pdf","citationCount":"1","resultStr":"{\"title\":\"Yeasts in the Era of Astrobiological Research\",\"authors\":\"Patrick Leo, Silvano Onofri\",\"doi\":\"10.1007/s41745-023-00378-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to their extraordinary genetic and phenotypic plasticity, yeast and yeast-like fungi have been able to adapt and colonize a wide range of ecological niches. Pigmented and nonpigmented extremophilic yeasts have been discovered in areas on Earth characterized by physical and chemical conditions similar to those found in extraterrestrial environments. Thus, these \\\"simple\\\" eukaryotic life forms have evolved unique genetic, metabolic, and phenotypic characteristics for coping with extreme conditions, existing in both natural (polar continents, deep sea, stratosphere, etc.) and manmade environments such as the cleanrooms where spacecraft are built. This makes them ideal test organisms for astrobiology research. All of the results from the numerous experiments in which they have been tested are helping us to understand what to look for and where in space missions searching for signs of present and/or past life. Meanwhile, we must continue to explore the most inhospitable places on Earth to discover new promising extremophiles that could be used as model organisms for astrobiology research.</p></div>\",\"PeriodicalId\":675,\"journal\":{\"name\":\"Journal of the Indian Institute of Science\",\"volume\":\"103 3\",\"pages\":\"699 - 709\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s41745-023-00378-5.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Institute of Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41745-023-00378-5\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Institute of Science","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s41745-023-00378-5","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Due to their extraordinary genetic and phenotypic plasticity, yeast and yeast-like fungi have been able to adapt and colonize a wide range of ecological niches. Pigmented and nonpigmented extremophilic yeasts have been discovered in areas on Earth characterized by physical and chemical conditions similar to those found in extraterrestrial environments. Thus, these "simple" eukaryotic life forms have evolved unique genetic, metabolic, and phenotypic characteristics for coping with extreme conditions, existing in both natural (polar continents, deep sea, stratosphere, etc.) and manmade environments such as the cleanrooms where spacecraft are built. This makes them ideal test organisms for astrobiology research. All of the results from the numerous experiments in which they have been tested are helping us to understand what to look for and where in space missions searching for signs of present and/or past life. Meanwhile, we must continue to explore the most inhospitable places on Earth to discover new promising extremophiles that could be used as model organisms for astrobiology research.
期刊介绍:
Started in 1914 as the second scientific journal to be published from India, the Journal of the Indian Institute of Science became a multidisciplinary reviews journal covering all disciplines of science, engineering and technology in 2007. Since then each issue is devoted to a specific topic of contemporary research interest and guest-edited by eminent researchers. Authors selected by the Guest Editor(s) and/or the Editorial Board are invited to submit their review articles; each issue is expected to serve as a state-of-the-art review of a topic from multiple viewpoints.