Yelisbeth Escalante, Franklin J. Méndez, Yraida Díaz, Marcel Inojosa, Myloa Morgado, Miguel Delgado, Ernesto Bastardo-González, Joaquín L. Brito
{"title":"Al或Zr改性mcm -41负载型钒催化剂用于噻吩加氢脱硫","authors":"Yelisbeth Escalante, Franklin J. Méndez, Yraida Díaz, Marcel Inojosa, Myloa Morgado, Miguel Delgado, Ernesto Bastardo-González, Joaquín L. Brito","doi":"10.1007/s13203-019-0227-z","DOIUrl":null,"url":null,"abstract":"<p>Vanadium catalysts supported on Al(Zr)-MCM-41-type materials were prepared by impregnation. Textural and structural properties, elemental composition and electronic structure were determined by N<sub>2</sub> physisorption, small-angle XRD, SEM–EDX and UV–vis DRS, respectively. Al-containing materials showed mostly of Al framework and a small fraction of Al extra-framework species. Zr-containing materials presented almost exclusively small clusters of Zr<sub>x</sub>O<sub>y</sub> covering the MCM-41 matrix. Vanadium catalysts, showed the presence of isolated V<sup>5+</sup> species and to a lesser extent polymeric chains likely as small crystallites of V<sub>2</sub>O<sub>5</sub>. The catalytic results revealed that VAlM30 catalyst, characterized by a Si/Al atomic ratio of 30, was the most active in thiophene hydrodesulfurization, which could be associated to better textural properties and high dispersion of the vanadium species.</p>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"9 1","pages":"47 - 55"},"PeriodicalIF":0.1250,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-019-0227-z","citationCount":"11","resultStr":"{\"title\":\"MCM-41-supported vanadium catalysts structurally modified with Al or Zr for thiophene hydrodesulfurization\",\"authors\":\"Yelisbeth Escalante, Franklin J. Méndez, Yraida Díaz, Marcel Inojosa, Myloa Morgado, Miguel Delgado, Ernesto Bastardo-González, Joaquín L. Brito\",\"doi\":\"10.1007/s13203-019-0227-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Vanadium catalysts supported on Al(Zr)-MCM-41-type materials were prepared by impregnation. Textural and structural properties, elemental composition and electronic structure were determined by N<sub>2</sub> physisorption, small-angle XRD, SEM–EDX and UV–vis DRS, respectively. Al-containing materials showed mostly of Al framework and a small fraction of Al extra-framework species. Zr-containing materials presented almost exclusively small clusters of Zr<sub>x</sub>O<sub>y</sub> covering the MCM-41 matrix. Vanadium catalysts, showed the presence of isolated V<sup>5+</sup> species and to a lesser extent polymeric chains likely as small crystallites of V<sub>2</sub>O<sub>5</sub>. The catalytic results revealed that VAlM30 catalyst, characterized by a Si/Al atomic ratio of 30, was the most active in thiophene hydrodesulfurization, which could be associated to better textural properties and high dispersion of the vanadium species.</p>\",\"PeriodicalId\":472,\"journal\":{\"name\":\"Applied Petrochemical Research\",\"volume\":\"9 1\",\"pages\":\"47 - 55\"},\"PeriodicalIF\":0.1250,\"publicationDate\":\"2019-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13203-019-0227-z\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Petrochemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13203-019-0227-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-019-0227-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MCM-41-supported vanadium catalysts structurally modified with Al or Zr for thiophene hydrodesulfurization
Vanadium catalysts supported on Al(Zr)-MCM-41-type materials were prepared by impregnation. Textural and structural properties, elemental composition and electronic structure were determined by N2 physisorption, small-angle XRD, SEM–EDX and UV–vis DRS, respectively. Al-containing materials showed mostly of Al framework and a small fraction of Al extra-framework species. Zr-containing materials presented almost exclusively small clusters of ZrxOy covering the MCM-41 matrix. Vanadium catalysts, showed the presence of isolated V5+ species and to a lesser extent polymeric chains likely as small crystallites of V2O5. The catalytic results revealed that VAlM30 catalyst, characterized by a Si/Al atomic ratio of 30, was the most active in thiophene hydrodesulfurization, which could be associated to better textural properties and high dispersion of the vanadium species.
期刊介绍:
Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.