{"title":"丝氨酸/苏氨酸蛋白磷酸酶1在哺乳动物精子活力中的作用。","authors":"Yibing Han, Christopher J Haines, Huai L Feng","doi":"10.1080/01485010701314032","DOIUrl":null,"url":null,"abstract":"<p><p>Mammalian spermatozoa acquire the capacity for motility and fertilization during the transit through the epididymis under the control of different factors, such as cAMP, intracellular pH, intracellular calcium and phosphorylation of sperm proteins. As the acquisition of functional competence including gaining motility during epididymal transit occurs in the complete absence of contemporaneous gene transcription and translation on the part of the spermatozoa, it is widely accepted that post-translational modifications are the only means by which spermatozoa can acquire functionality. Serine-threonine protein phosphatase 1 (PP1) together with their testis/sperm-specific interacting proteins might be involved in this regulatory mechanism. PP1alpha, PP1beta/delta, PP1gamma1 and PP1gamma2 are all expressed in the testis whereas PP1gamma2 is the only isoform expressed on spermatozoa. I2, I3, sds22, 14-3-3 and hsp90 are associated with PP1gamma2 in spermatozoa located on the sperm head and tail. Activity of PP1gamma2 and the binding pattern to these regulatory proteins changes in spermatozoa recruited from the caput and those from the cauda part of the epididymis. In this review, we summarize the possible roles of PP1 on spermatozoa during spermatogenesis and flagellar motility control. We suggest that PP1 might take part in the inhibition of the sperm motility activation by interacting with AKAPs and CAMKII. A hypothesized signaling pathway of mammalian sperm motility activation and PP1's function has been proposed.</p>","PeriodicalId":8143,"journal":{"name":"Archives of andrology","volume":"53 4","pages":"169-77"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01485010701314032","citationCount":"28","resultStr":"{\"title\":\"Role(s) of the serine/threonine protein phosphatase 1 on mammalian sperm motility.\",\"authors\":\"Yibing Han, Christopher J Haines, Huai L Feng\",\"doi\":\"10.1080/01485010701314032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mammalian spermatozoa acquire the capacity for motility and fertilization during the transit through the epididymis under the control of different factors, such as cAMP, intracellular pH, intracellular calcium and phosphorylation of sperm proteins. As the acquisition of functional competence including gaining motility during epididymal transit occurs in the complete absence of contemporaneous gene transcription and translation on the part of the spermatozoa, it is widely accepted that post-translational modifications are the only means by which spermatozoa can acquire functionality. Serine-threonine protein phosphatase 1 (PP1) together with their testis/sperm-specific interacting proteins might be involved in this regulatory mechanism. PP1alpha, PP1beta/delta, PP1gamma1 and PP1gamma2 are all expressed in the testis whereas PP1gamma2 is the only isoform expressed on spermatozoa. I2, I3, sds22, 14-3-3 and hsp90 are associated with PP1gamma2 in spermatozoa located on the sperm head and tail. Activity of PP1gamma2 and the binding pattern to these regulatory proteins changes in spermatozoa recruited from the caput and those from the cauda part of the epididymis. In this review, we summarize the possible roles of PP1 on spermatozoa during spermatogenesis and flagellar motility control. We suggest that PP1 might take part in the inhibition of the sperm motility activation by interacting with AKAPs and CAMKII. A hypothesized signaling pathway of mammalian sperm motility activation and PP1's function has been proposed.</p>\",\"PeriodicalId\":8143,\"journal\":{\"name\":\"Archives of andrology\",\"volume\":\"53 4\",\"pages\":\"169-77\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01485010701314032\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of andrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01485010701314032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of andrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01485010701314032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Role(s) of the serine/threonine protein phosphatase 1 on mammalian sperm motility.
Mammalian spermatozoa acquire the capacity for motility and fertilization during the transit through the epididymis under the control of different factors, such as cAMP, intracellular pH, intracellular calcium and phosphorylation of sperm proteins. As the acquisition of functional competence including gaining motility during epididymal transit occurs in the complete absence of contemporaneous gene transcription and translation on the part of the spermatozoa, it is widely accepted that post-translational modifications are the only means by which spermatozoa can acquire functionality. Serine-threonine protein phosphatase 1 (PP1) together with their testis/sperm-specific interacting proteins might be involved in this regulatory mechanism. PP1alpha, PP1beta/delta, PP1gamma1 and PP1gamma2 are all expressed in the testis whereas PP1gamma2 is the only isoform expressed on spermatozoa. I2, I3, sds22, 14-3-3 and hsp90 are associated with PP1gamma2 in spermatozoa located on the sperm head and tail. Activity of PP1gamma2 and the binding pattern to these regulatory proteins changes in spermatozoa recruited from the caput and those from the cauda part of the epididymis. In this review, we summarize the possible roles of PP1 on spermatozoa during spermatogenesis and flagellar motility control. We suggest that PP1 might take part in the inhibition of the sperm motility activation by interacting with AKAPs and CAMKII. A hypothesized signaling pathway of mammalian sperm motility activation and PP1's function has been proposed.