Xiuhua Zhang, Shimin Wang, Li Jia, Zuxun Xu, Yu Zeng
{"title":"基于PoPD/MWNTs复合膜修饰玻碳电极的多苯磺酸钙电化学传感器的研究","authors":"Xiuhua Zhang, Shimin Wang, Li Jia, Zuxun Xu, Yu Zeng","doi":"10.1016/j.jbbm.2007.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>A poly-<em>o</em>-phenylenediamine and multi-wall carbon nanotubes composite (PoPD/MWNTs) modified glassy carbon electrode (GCE) was prepared by in situ electropolymerization using an ionic surfactant as the supporting electrolyte. The morphology of the resulting PoPD/MWNTs composite was characterized by TEM and the electrochemical properties of the modified electrode were characterized by cyclic voltammetry. The electrochemical behavior of calcium dobesilate on PoPD/MWNTs modified electrode was also investigated. The large current response of calcium dobesilate on PoPD/MWNTs modified electrode is probably caused by the synergistic effect of the electrocatalytic property of PoPD and MWNTs. The reductive peak current increased linearly with the concentration of calcium dobesilate in the range of 0.1–1.0 μmol/L and 4.0–400 μmol/L by square wave adsorptive stripping voltammetry, respectively. The detection limit (three times the signal blank/slope) was 0.035 μmol/L. The modified electrode could eliminate the interference of dopamine, norepinephrine and epinephrine at 100-, 90- and 70-fold concentration of 1.0 μmol/L calcium dobesilate, respectively. The proposed modified electrode provides a new promising and alternative way to detect calcium dobesilate.</p></div>","PeriodicalId":15257,"journal":{"name":"Journal of biochemical and biophysical methods","volume":"70 6","pages":"Pages 1203-1209"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jbbm.2007.10.002","citationCount":"21","resultStr":"{\"title\":\"An electrochemical sensor for determination of calcium dobesilate based on PoPD/MWNTs composite film modified glassy carbon electrode\",\"authors\":\"Xiuhua Zhang, Shimin Wang, Li Jia, Zuxun Xu, Yu Zeng\",\"doi\":\"10.1016/j.jbbm.2007.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A poly-<em>o</em>-phenylenediamine and multi-wall carbon nanotubes composite (PoPD/MWNTs) modified glassy carbon electrode (GCE) was prepared by in situ electropolymerization using an ionic surfactant as the supporting electrolyte. The morphology of the resulting PoPD/MWNTs composite was characterized by TEM and the electrochemical properties of the modified electrode were characterized by cyclic voltammetry. The electrochemical behavior of calcium dobesilate on PoPD/MWNTs modified electrode was also investigated. The large current response of calcium dobesilate on PoPD/MWNTs modified electrode is probably caused by the synergistic effect of the electrocatalytic property of PoPD and MWNTs. The reductive peak current increased linearly with the concentration of calcium dobesilate in the range of 0.1–1.0 μmol/L and 4.0–400 μmol/L by square wave adsorptive stripping voltammetry, respectively. The detection limit (three times the signal blank/slope) was 0.035 μmol/L. The modified electrode could eliminate the interference of dopamine, norepinephrine and epinephrine at 100-, 90- and 70-fold concentration of 1.0 μmol/L calcium dobesilate, respectively. The proposed modified electrode provides a new promising and alternative way to detect calcium dobesilate.</p></div>\",\"PeriodicalId\":15257,\"journal\":{\"name\":\"Journal of biochemical and biophysical methods\",\"volume\":\"70 6\",\"pages\":\"Pages 1203-1209\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jbbm.2007.10.002\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biochemical and biophysical methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165022X07001674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemical and biophysical methods","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165022X07001674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An electrochemical sensor for determination of calcium dobesilate based on PoPD/MWNTs composite film modified glassy carbon electrode
A poly-o-phenylenediamine and multi-wall carbon nanotubes composite (PoPD/MWNTs) modified glassy carbon electrode (GCE) was prepared by in situ electropolymerization using an ionic surfactant as the supporting electrolyte. The morphology of the resulting PoPD/MWNTs composite was characterized by TEM and the electrochemical properties of the modified electrode were characterized by cyclic voltammetry. The electrochemical behavior of calcium dobesilate on PoPD/MWNTs modified electrode was also investigated. The large current response of calcium dobesilate on PoPD/MWNTs modified electrode is probably caused by the synergistic effect of the electrocatalytic property of PoPD and MWNTs. The reductive peak current increased linearly with the concentration of calcium dobesilate in the range of 0.1–1.0 μmol/L and 4.0–400 μmol/L by square wave adsorptive stripping voltammetry, respectively. The detection limit (three times the signal blank/slope) was 0.035 μmol/L. The modified electrode could eliminate the interference of dopamine, norepinephrine and epinephrine at 100-, 90- and 70-fold concentration of 1.0 μmol/L calcium dobesilate, respectively. The proposed modified electrode provides a new promising and alternative way to detect calcium dobesilate.