小鼠胚胎干细胞的整合三维扩增与成骨分化。

Wesley L Randle, Jae Min Cha, Yu-Shik Hwang, K L Andrew Chan, Sergei G Kazarian, Julia M Polak, Athanasios Mantalaris
{"title":"小鼠胚胎干细胞的整合三维扩增与成骨分化。","authors":"Wesley L Randle,&nbsp;Jae Min Cha,&nbsp;Yu-Shik Hwang,&nbsp;K L Andrew Chan,&nbsp;Sergei G Kazarian,&nbsp;Julia M Polak,&nbsp;Athanasios Mantalaris","doi":"10.1089/ten.2007.0072","DOIUrl":null,"url":null,"abstract":"<p><p>Embryonic stem cell (ESC) culture is fragmented and laborious and involves operator decisions. Most protocols consist of 3 individual steps: maintenance, embryoid body (EB) formation, and differentiation. Integration will assist automation, ultimately aiding scale-up to clinically relevant numbers. These problems were addressed by encapsulating undifferentiated murine ESCs (mESCs) in 1.1% (w/v) low-viscosity alginic acid, 0.1% (v/v) porcine gelatin hydrogel beads (d = 2.3 mm). Six hundred beads containing 10,000 mESCs per bead were cultured in a 50-mL high-aspect-ratio vessel bioreactor. Bioreactor cultures were rotated at 17.5 revolutions per min, cultured in maintenance medium containing leukemia inhibitory factor for 3 days, replaced with EB formation medium for 5 days followed by osteogenic medium containing L-ascorbate-2-phosphate (50 microg/mL), beta-glycerophosphate (10 mM), and dexamethasone (1 microM) for an additional 21 days. After 29 days, 84 times as many cells per bead were observed and mineralized matrix was formed within the alginate beads. Osteogenesis was confirmed using von Kossa, Alizarin Red S staining, alkaline phosphatase activity, immunocytochemistry for osteocalcin, OB-cadherin, collagen type I, reverse transcriptase polymerase chain reaction, microcomputed tomography (micro-computed tomography) and Fourier transform infrared spectroscopic imaging. This simplified, integrated, and potentially scaleable methodology could enable the production of 3-demensional mineralized tissue from ESCs for potential clinical applications.</p>","PeriodicalId":23102,"journal":{"name":"Tissue engineering","volume":" ","pages":"2957-70"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/ten.2007.0072","citationCount":"75","resultStr":"{\"title\":\"Integrated 3-dimensional expansion and osteogenic differentiation of murine embryonic stem cells.\",\"authors\":\"Wesley L Randle,&nbsp;Jae Min Cha,&nbsp;Yu-Shik Hwang,&nbsp;K L Andrew Chan,&nbsp;Sergei G Kazarian,&nbsp;Julia M Polak,&nbsp;Athanasios Mantalaris\",\"doi\":\"10.1089/ten.2007.0072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Embryonic stem cell (ESC) culture is fragmented and laborious and involves operator decisions. Most protocols consist of 3 individual steps: maintenance, embryoid body (EB) formation, and differentiation. Integration will assist automation, ultimately aiding scale-up to clinically relevant numbers. These problems were addressed by encapsulating undifferentiated murine ESCs (mESCs) in 1.1% (w/v) low-viscosity alginic acid, 0.1% (v/v) porcine gelatin hydrogel beads (d = 2.3 mm). Six hundred beads containing 10,000 mESCs per bead were cultured in a 50-mL high-aspect-ratio vessel bioreactor. Bioreactor cultures were rotated at 17.5 revolutions per min, cultured in maintenance medium containing leukemia inhibitory factor for 3 days, replaced with EB formation medium for 5 days followed by osteogenic medium containing L-ascorbate-2-phosphate (50 microg/mL), beta-glycerophosphate (10 mM), and dexamethasone (1 microM) for an additional 21 days. After 29 days, 84 times as many cells per bead were observed and mineralized matrix was formed within the alginate beads. Osteogenesis was confirmed using von Kossa, Alizarin Red S staining, alkaline phosphatase activity, immunocytochemistry for osteocalcin, OB-cadherin, collagen type I, reverse transcriptase polymerase chain reaction, microcomputed tomography (micro-computed tomography) and Fourier transform infrared spectroscopic imaging. This simplified, integrated, and potentially scaleable methodology could enable the production of 3-demensional mineralized tissue from ESCs for potential clinical applications.</p>\",\"PeriodicalId\":23102,\"journal\":{\"name\":\"Tissue engineering\",\"volume\":\" \",\"pages\":\"2957-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/ten.2007.0072\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.2007.0072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/ten.2007.0072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

胚胎干细胞(ESC)培养是分散的,费力的,涉及操作者的决策。大多数方案包括3个单独的步骤:维持,胚状体(EB)形成和分化。集成将有助于自动化,最终帮助扩大到临床相关的数字。这些问题通过将未分化小鼠ESCs (mESCs)包埋在1.1% (w/v)低粘度海藻酸和0.1% (v/v)猪明胶水凝胶珠(d = 2.3 mm)中来解决。在50ml高纵横比容器生物反应器中培养600颗微珠,每颗含有10,000个mESCs。以每分钟17.5转的速度旋转生物反应器培养物,在含有白血病抑制因子的维持培养基中培养3天,用EB形成培养基替换5天,然后用含有l -抗坏血酸-2-磷酸(50微克/毫升)、β -甘油磷酸酯(10毫米)和地塞米松(1微克)的成骨培养基再培养21天。29天后,藻酸盐珠内细胞数量增加84倍,矿化基质形成。采用von Kossa、茜素红S染色、碱性磷酸酶活性、骨钙素免疫细胞化学、ob -钙粘蛋白、I型胶原、逆转录酶聚合酶链反应、微计算机断层扫描(微计算机断层扫描)和傅里叶变换红外光谱成像证实成骨。这种简化的、集成的、具有潜在可扩展性的方法可以从ESCs中生产三维矿化组织,用于潜在的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated 3-dimensional expansion and osteogenic differentiation of murine embryonic stem cells.

Embryonic stem cell (ESC) culture is fragmented and laborious and involves operator decisions. Most protocols consist of 3 individual steps: maintenance, embryoid body (EB) formation, and differentiation. Integration will assist automation, ultimately aiding scale-up to clinically relevant numbers. These problems were addressed by encapsulating undifferentiated murine ESCs (mESCs) in 1.1% (w/v) low-viscosity alginic acid, 0.1% (v/v) porcine gelatin hydrogel beads (d = 2.3 mm). Six hundred beads containing 10,000 mESCs per bead were cultured in a 50-mL high-aspect-ratio vessel bioreactor. Bioreactor cultures were rotated at 17.5 revolutions per min, cultured in maintenance medium containing leukemia inhibitory factor for 3 days, replaced with EB formation medium for 5 days followed by osteogenic medium containing L-ascorbate-2-phosphate (50 microg/mL), beta-glycerophosphate (10 mM), and dexamethasone (1 microM) for an additional 21 days. After 29 days, 84 times as many cells per bead were observed and mineralized matrix was formed within the alginate beads. Osteogenesis was confirmed using von Kossa, Alizarin Red S staining, alkaline phosphatase activity, immunocytochemistry for osteocalcin, OB-cadherin, collagen type I, reverse transcriptase polymerase chain reaction, microcomputed tomography (micro-computed tomography) and Fourier transform infrared spectroscopic imaging. This simplified, integrated, and potentially scaleable methodology could enable the production of 3-demensional mineralized tissue from ESCs for potential clinical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue engineering
Tissue engineering CELL & TISSUE ENGINEERING-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信